已知數(shù)列{an}的通項公式an=
n
2n
,求其前5項的和( 。
A.
31
16
B.
55
32
C.
37
16
D.
57
32
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=
n2n
,求其前5項的和( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的通項公式an=
n
2n
,求其前5項的和( 。
A.
31
16
B.
55
32
C.
37
16
D.
57
32

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的通項公式an=
n
2n
,求其前5項的和(  )
A.
31
16
B.
55
32
C.
37
16
D.
57
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=3,a2=5,其前n項和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1
,且已知f(x)=2x-1
(1)求數(shù)列{an}的通項公式;
(2)求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
;
(3)求證:
f(2)
a1
+
f(3)
a2
+
f(4)
a3
+…+
f(n+1)
an
n2
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓二模)已知函數(shù)ft(x)=
1
1+x
-
1
(1+x)2
(t-x),其中t為正常數(shù).
(Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
(Ⅱ)設數(shù)列{an}滿足:a1=
5
3
,3an+1=an+2,(1)求數(shù)列{an}的通項公式an; (2)證明:對任意的x>0,
1
an
f
2
3n
(x)(n∈N*);
(Ⅲ)證明:
1
a1
+
1
a2
+…+
1
an
n2
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.
(1)若an=
lgb 1+lgb2+…+lgbnn
(其中b1=1,bn>0,n∈N*),試求數(shù)列{an}的公差d與數(shù)列{bn}的公比q之間的關系式;
(2)若a1b1+a2b2+…+anbn=n2n+3,且a1=8,試求數(shù)列{an}與{bn}的通項公式.

查看答案和解析>>


同步練習冊答案