根據(jù)下列條件,能列出方程的是( 。
A.一個(gè)數(shù)的2倍比3小2
B.a(chǎn)與1的差的
1
4
C.甲數(shù)的3倍與乙數(shù)的
1
2
的和
D.a(chǎn)與b的和的
3
5
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)下列條件,能列出方程的是( 。
A.一個(gè)數(shù)的2倍比3小2
B.a(chǎn)與1的差的
1
4
C.甲數(shù)的3倍與乙數(shù)的
1
2
的和
D.a(chǎn)與b的和的
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,能列出方程的是(  )

A.一個(gè)數(shù)的倍比小          B.的差的

C.甲數(shù)的倍與乙數(shù)的的和    D.的和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)下面所給條件,能列出方程的是( 。
A.一個(gè)數(shù)的
1
3
是6
B.a(chǎn)與1的差的
1
4
C.甲數(shù)的2倍與乙數(shù)的
1
3
的和
D.a(chǎn)與b的和的60%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+數(shù)學(xué)公式=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+數(shù)學(xué)公式=0.②
將①代入②,整理得4c2+2c-2ab+數(shù)學(xué)公式=0.∴ab=2c2+c+數(shù)學(xué)公式
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+數(shù)學(xué)公式=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+數(shù)學(xué)公式≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+數(shù)學(xué)公式=0.∴t1=t2=數(shù)學(xué)公式,即a=b=數(shù)學(xué)公式.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=數(shù)學(xué)公式+t,b=數(shù)學(xué)公式-t.①
∵a2+b2+6c+數(shù)學(xué)公式=0,∴(a+b)2-2ab+6c+數(shù)學(xué)公式=0.②
將①代入②,得(1-2c)2-2數(shù)學(xué)公式+6c+數(shù)學(xué)公式=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=數(shù)學(xué)公式,b=數(shù)學(xué)公式.a(chǎn)=b=數(shù)學(xué)公式,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=數(shù)學(xué)公式+t,y=數(shù)學(xué)公式-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2002•荊門(mén))閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=,b=.a(chǎn)=b=,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=+t,y=-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《有理數(shù)》(05)(解析版) 題型:解答題

(2002•荊門(mén))閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=,b=.a(chǎn)=b=,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=+t,y=-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年湖北省荊門(mén)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•荊門(mén))閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=,b=.a(chǎn)=b=,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=+t,y=-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>


同步練習(xí)冊(cè)答案