下面計算不正確的是( 。
A.-22+(-3)2=5B.-13-3(-1)3=2
C.-22(-3)2=-36D.-(-3)2÷(-32)=-1
相關習題

科目:初中數(shù)學 來源: 題型:

請你先閱讀下列計算過程,再回答所提出的問題.
a-2
a2-4
-
2
2-a
=
a-3
(a+2)(a-2)
-
2
a-2

=
a-3
(a+2)(a-2)
-
2(a+2)
(a+2)(a-2)

=a-3-2(a+2)
=-a-7
上面的計算是否正確?如果不正確,請加以改正.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

請你先閱讀下列計算過程,再回答所提出的問題.
a-2
a2-4
-
2
2-a
=
a-3
(a+2)(a-2)
-
2
a-2

=
a-3
(a+2)(a-2)
-
2(a+2)
(a+2)(a-2)

=a-3-2(a+2)
=-a-7
上面的計算是否正確?如果不正確,請加以改正.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面計算不正確的是(  )
A.-22+(-3)2=5B.-13-3(-1)3=2
C.-22(-3)2=-36D.-(-3)2÷(-32)=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•沙縣質檢)為了綠化環(huán)境,某中學七年級(1)班同學都積極參加了植樹活動.下面是今年2月份該班同學植樹情況的扇形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題:
(1)植樹3株的人數(shù)為
50
50
,并將條形統(tǒng)計圖補充完整;
(2)該班同學植樹株數(shù)的中位數(shù)是
2
2
;
(3)小明按以下方法計算出該班同學平均植樹的株數(shù)是:(1+2+3+4+5)÷5=3(株).根據(jù)你所學的統(tǒng)計知識判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>


同步練習冊答案