過點(diǎn)(-1,1)且與圓x2+y2-4x+2y-4=0相切的直線的方程為( 。
A.5x-12y+17=0
B.5x-12y+17=0或5x+12y+17=0
C.x=-1或5x+12y+17=0
D.x=-1或5x-12y+17=0
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-1,1)且與圓x2+y2-4x+2y-4=0相切的直線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)(-1,1)且與圓x2+y2-4x+2y-4=0相切的直線的方程為( 。
A.5x-12y+17=0
B.5x-12y+17=0或5x+12y+17=0
C.x=-1或5x+12y+17=0
D.x=-1或5x-12y+17=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年天津市五校高二(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

過點(diǎn)(-1,1)且與圓x2+y2-4x+2y-4=0相切的直線的方程為( )
A.5x-12y+17=0
B.5x-12y+17=0或5x+12y+17=0
C.x=-1或5x+12y+17=0
D.x=-1或5x-12y+17=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過點(diǎn)(-1,1)且與圓x2+y2-4x+2y-4=0相切的直線的方程為


  1. A.
    5x-12y+17=0
  2. B.
    5x-12y+17=0或5x+12y+17=0
  3. C.
    x=-1或5x+12y+17=0
  4. D.
    x=-1或5x-12y+17=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求過直線x+y+4=0與x-y+2=0的交點(diǎn),且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點(diǎn)A、B,求弦AB的長及其垂直平分線的方程.
(3)過點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求過直線x+y+4=0與x-y+2=0的交點(diǎn),且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點(diǎn)A、B,求弦AB的長及其垂直平分線的方程.
(3)過點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年浙江省溫州市瑞安五中高一(下)模塊月考數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

(1)求過直線x+y+4=0與x-y+2=0的交點(diǎn),且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點(diǎn)A、B,求弦AB的長及其垂直平分線的方程.
(3)過點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線x2+y2-4x-2y-k=0表示的圖象為圓.
(1)若k=15,求過該曲線與直線x-2y+5=0的交點(diǎn),且面積最小的圓的方程.
(2)若該圓關(guān)于直線x+y-4=0的對(duì)稱圓與直線6x+8y-59=0相切,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線x2+y2-4x-2y-k=0表示的圖象為圓.
(1)若k=15,求過該曲線與直線x-2y+5=0的交點(diǎn),且面積最小的圓的方程.
(2)若該圓關(guān)于直線x+y-4=0的對(duì)稱圓與直線6x+8y-59=0相切,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長沙一中高三(下)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知曲線x2+y2-4x-2y-k=0表示的圖象為圓.
(1)若k=15,求過該曲線與直線x-2y+5=0的交點(diǎn),且面積最小的圓的方程.
(2)若該圓關(guān)于直線x+y-4=0的對(duì)稱圓與直線6x+8y-59=0相切,求實(shí)數(shù)k的值.

查看答案和解析>>


同步練習(xí)冊答案