在等比數(shù)列{an}中,a1+an=34,a2?an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于(  )
A.4B.5C.6D.7
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:三亞模擬 題型:單選題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省本溪一中、莊河高中聯(lián)考高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省盤錦二高高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省國興中學(xué)、海師附中、嘉積中學(xué)、三亞一中高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省三亞一中、國興中學(xué)、海師附中、嘉積中學(xué)四校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在等比數(shù)列{an}中,a1+an=34,a2•an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省臺(tái)州中學(xué)2012屆高三下學(xué)期第二次統(tǒng)練數(shù)學(xué)理科試題 題型:013

在等比數(shù)列{an}中,a1+an=34,a2·an-1=64,且前n項(xiàng)和Sn=62,則項(xiàng)數(shù)n等于

[  ]

A.4

B.5

C.6

D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東模擬 題型:解答題

等比數(shù)列{an} 中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 6 4 14
第三行 9 8 18
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)若數(shù)列 {bn} 滿足 bn=
1
(n+2)log3(
an+1
2
)
,記數(shù)列 {bn} 的前n項(xiàng)和為Sn,證明Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)等比數(shù)列{an} 中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 6 4 14
第三行 9 8 18
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)若數(shù)列 {bn} 滿足 bn=
1
(n+2)log3(
an+1
2
)
,記數(shù)列 {bn} 的前n項(xiàng)和為Sn,證明Sn
3
4

查看答案和解析>>


同步練習(xí)冊答案