設(shè)函數(shù)f(x)=ax2+bx+c,若f(x)>0的解集為{x|x<-2或x>4},則( 。
A.f(5)<f(2)<f(-1)B.f(-1)<f(2)<f(5)C.f(2)<f(-1)<f(5)D.f(2)<f(5)<f(-1)
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c,若f(x)>0的解集為{x|x<-2或x>4},則( 。
A、f(5)<f(2)<f(-1)B、f(-1)<f(2)<f(5)C、f(2)<f(-1)<f(5)D、f(2)<f(5)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北模擬 題型:單選題

設(shè)函數(shù)f(x)=ax2+bx+c,若f(x)>0的解集為{x|x<-2或x>4},則( 。
A.f(5)<f(2)<f(-1)B.f(-1)<f(2)<f(5)C.f(2)<f(-1)<f(5)D.f(2)<f(5)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省補(bǔ)習(xí)學(xué)校聯(lián)合體高三大聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=ax2+bx+c,若f(x)>0的解集為{x|x<-2或x>4},則( )
A.f(5)<f(2)<f(-1)
B.f(-1)<f(2)<f(5)
C.f(2)<f(-1)<f(5)
D.f(2)<f(5)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)函數(shù)f(x)=ax2+bx+c,若f(x)>0的解集為{x|x<-2或x>4},則


  1. A.
    f(5)<f(2)<f(-1)
  2. B.
    f(-1)<f(2)<f(5)
  3. C.
    f(2)<f(-1)<f(5)
  4. D.
    f(2)<f(5)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函數(shù)f(x)的圖象與直線x+y=0有且只有一個(gè)交點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)a>
1
2
時(shí),若函數(shù)g(x)=
f(lnx)+k-1
lnx
在區(qū)間[e,e2]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若x=-1為函數(shù)y=f(x)ex的一個(gè)極值點(diǎn),則下列圖象不可能為y=f(x)的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(x))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)長(zhǎng)與寬的比為2:1的矩形區(qū)域,則a的值為
-16或-1
-16或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)的定義域?yàn)镈,值域?yàn)锳.
(1)若a=-1,b=2,c=3,則D=
[-1,3]
[-1,3]
,A=
[0,+∞)
[0,+∞)

(2)若所有點(diǎn)(s,t)(s∈D,t∈A)構(gòu)成正方形區(qū)域,則a的值為
-4
-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c為實(shí)數(shù),且a≠0),F(xiàn)(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲線y=f(x)通過點(diǎn)(0,2a+3),且在點(diǎn)(-1,f(-1))處的切線垂直于y軸,求f(x)的表達(dá)式;
(2)在(Ⅰ)在條件下,當(dāng)x∈[-1,1]時(shí),g(x)=kx-f(x)是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.

查看答案和解析>>


同步練習(xí)冊(cè)答案