已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是(  )
A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=0
D
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是( 。
A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省黃山市七校高三(上)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是( )
A.2x-y+3=0
B.2x-y-3=0
C.2x-y+1=0
D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省黃山市七校高三(上)聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是( )
A.2x-y+3=0
B.2x-y-3=0
C.2x-y+1=0
D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知直線l是拋物線y=x2的一條切線,且l與直線2x-y+4=0平行,則直線l的方程是


  1. A.
    2x-y+3=0
  2. B.
    2x-y-3=0
  3. C.
    2x-y+1=0
  4. D.
    2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:溫州二模 題型:解答題

已知直線l:y=2x-2與拋物線M:y=x2的切線m平行
(I)求切線m的方程和切點(diǎn)A的坐標(biāo)
(II)若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線M的兩條切線,切點(diǎn)分別為B,C,同時(shí)分別與切線m交于點(diǎn)E,F(xiàn)試問(wèn)
S△ABC
|EF|
是否為定值?若是,則求之,若不是,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省溫州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知直線l:y=2x-2與拋物線M:y=x2的切線m平行
(I)求切線m的方程和切點(diǎn)A的坐標(biāo)
(II)若點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作拋物線M的兩條切線,切點(diǎn)分別為B,C,同時(shí)分別與切線m交于點(diǎn)E,F(xiàn)試問(wèn)是否為定值?若是,則求之,若不是,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2my(m>0)和直線l:y=kx-m沒(méi)有公共點(diǎn)(其中k、m為常數(shù)),動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過(guò)P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過(guò)點(diǎn)Q(k,1).
(1)求拋物線C的方程;
(2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),證明:S△OAP•S△OBQ=S△OAQ•S△OBP

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y=x2+2x和C:y=-x2+a,如果直線l同時(shí)是C1和C2的切線,稱l是C1和C2的公切線,公切線上兩個(gè)切點(diǎn)之間的線段,稱為公切線段.
(Ⅰ)a取什么值時(shí),C1和C2有且僅有一條公切線?寫出此公切線的方程;
(Ⅱ)若C1和C2有兩條公切線,證明相應(yīng)的兩條公切線段互相平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點(diǎn)M
(Ⅰ)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
(Ⅱ)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過(guò)M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案