【題目】一個長方體水箱,長50cm,寬40cm,水箱上部安裝了一個進水管A,底部安裝了一個放水管B.先開A管,過一段時間后接著打開B管,下邊折線統(tǒng)計圖表示水箱中水位的變化情況.
(1) 分鐘后兩管同時打開,這時水深 cm.
(2)A管每分鐘進水 立方厘米,B管每分鐘放水 立方厘米.
(3)A,B兩管的內(nèi)徑相同,A管的進水速度是3米/秒,B管的放水速度是 米/秒.
【答案】(1)10,40;(2)6000,4000;(3)2
【解析】
試題分析:(1)觀察統(tǒng)計圖知道,10分鐘后兩管同時打開,這時水深是30厘米;
(2)前10分鐘進水的水位深是30厘米,明顯B管沒有開,由此算出A管每分鐘的進水的水位高度;A和B同時開放(20﹣10)分鐘內(nèi)進水的水位高度的變化是(40﹣30)厘米,由此得出B管每分鐘放水的水位高度是1厘米,再根據(jù)長方體的體積公式,即可求出A管每分鐘進水的體積與B管每分鐘放水的體積;
(3)A和B同時開放,(20﹣10)分鐘內(nèi)進水的水位高度的變化是(40﹣30)厘米,所以每分鐘進水的高度是(40﹣30)÷(20﹣10)厘米,此時A管的進水速度是3米/秒,所以B水管的放水速度即可求出.
解答:解:(1)從統(tǒng)計圖知道,10分鐘后兩管同時打開,這時水深是40厘米;
(2)50×40×(30÷10),
=2000×3,
=6000(立方厘米);
50×40×[(30÷10)﹣(40﹣30)÷(20﹣10)],
=2000×[3﹣1],
=4000(立方厘米);
(3)3﹣1=2(米/秒);
故答案為:10,30;6000,4000;2.
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】(江蘇)如圖,正方形網(wǎng)格中,△ABC是格點三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)90゜得到△AB1C1.
(1)在正方形網(wǎng)格中,作出△AB1C1;
(2)設(shè)每個網(wǎng)格小正方形的邊長是1cm,用陰影部分表示出旋轉(zhuǎn)過程中線段BC所掃過的面積,然后求出它的面積.(π取3)
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】在高考中,四位同學(xué)的總成績分別是323分、556分、779分、765分,小麗是第一名,小紅是最后一名,小剛比小華的分?jǐn)?shù)高,你能猜出他們四人各得了多少分嗎?(8分)
小麗:( ) 小紅:( )
小剛:( ) 小華:( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com