盒子中裝有8個紅球和8個白球,任意摸出1個球,是紅球的可能性是
1
2
1
2
,至少摸出
3
3
個球,才能保證至少有2個球的顏色相同.
分析:(1)先用“8+8”求出盒子中球的個數(shù),求出摸一個球,摸到紅球的可能性,根據(jù)可能性的求法:即求一個數(shù)是另一個數(shù)的幾分之幾用除法解答;
(2)求至少摸出幾個球,就可保證至少有兩個球的顏色相同,把球的顏色種類看作“抽屜”,根據(jù)抽屜原理可知:要保證少有兩個球的顏色相同.至少應(yīng)摸出2+1=3個.
解答:解:(1)8÷(8+8)=
1
2

(2)要保證少有兩個球的顏色相同.至少應(yīng)摸出2+1=3個.
答:是紅球的可能性是
1
2
,至少摸出3個球,才能保證至少有2個球的顏色相同;
故答案為:
1
2
,3.
點(diǎn)評:解答此類題用到的知識點(diǎn):(1)求一個數(shù)是另一個數(shù)的幾分之幾用除法解答,進(jìn)而得出結(jié)論;
(2)找出把誰看作“抽屜個數(shù)”,把誰看作“物體個數(shù)”,然后根據(jù)抽屜原理解答即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:填空題

盒子中裝有8個紅球和8個白球,任意摸出1個球,是紅球的可能性是________,至少摸出________個球,才能保證至少有2個球的顏色相同.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:期末題 題型:填空題

盒子中裝有8個紅球、8個黑球和8個白球,任意摸出1個球,是紅球的可能性是,至少摸出(    )個球,就可保證其中至少有2個球的顏色相同。

查看答案和解析>>

同步練習(xí)冊答案