在直角三角形中,有一個銳角是25°,那么另一個銳角是
65
65
°.
分析:根據(jù)直角三角形兩個銳角和為90°,即可得另一個銳角度數(shù).
解答:解:由題意得,在直角三角形中,兩個銳角和為90°,
則另一個銳角的度數(shù)為:90°-25°=65°.
答:那么另一個銳角是 65°.
故答案為:65.
點評:本題考查了直角三角形的性質(zhì),是基礎(chǔ)題,應(yīng)注意基礎(chǔ)知識的積累.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個小園孔,則一條直達(dá)底部的直吸管的最大長度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計.
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點有一只螞蟻,它想吃到與A點相對的B點處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個長方形,如圖五所示(A點的位置已經(jīng)給出),請在圖中中標(biāo)出B點的位置并連接AB.
②小聰認(rèn)為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長方形的底面A點有一只螞蟻,想吃到上底面與A點相對的B點處的食物,它沿長方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在正方形網(wǎng)格中畫有一個不等腰的直角三角形A.若再貼上一個三角形B,使所得的圖形是等腰三角形,但要求三角形B與三角形A除了有一條公共邊重合外,沒有其他的公共點,那么,符合條件的三角形B有
7
7
個.(三角形B的頂點要在格子點上)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

下面四句話中,正確的一句是( 。

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=________.
(2)如圖二,是一個園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個小園孔,則一條直達(dá)底部的直吸管的最大長度是________.注:罐壁厚度和頂部園孔直徑忽略不計.
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=________. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點有一只螞蟻,它想吃到與A點相對的B點處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個長方形,如圖五所示(A點的位置已經(jīng)給出),請在圖中中標(biāo)出B點的位置并連接AB.
②小聰認(rèn)為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是________厘米.注:π值取3.
(5)如圖六,在長方形的底面A點有一只螞蟻,想吃到上底面與A點相對的B點處的食物,它沿長方形表面爬行的最短路程是________厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:單選題

下面四句話中,正確的一句是


  1. A.
    甲數(shù)除以乙數(shù),等于甲數(shù)乘乙數(shù)的倒數(shù)
  2. B.
    1克鹽溶于100克水中,鹽水的含鹽率是1%
  3. C.
    在一個三角形中最多有一個直角
  4. D.
    從平行四邊形的一個頂點可以作這個平行四邊形的無數(shù)條高

查看答案和解析>>

同步練習(xí)冊答案