已經(jīng)a=數(shù)學公式b,則a:b=________:________.

2    3
分析:根據(jù)比例的性質(zhì),把所給的等式a=b,改寫成一個外項是a,一個內(nèi)項是b的比例,則和a相乘的數(shù)1就作為比例的另一個外項,和b相乘的數(shù)就作為比例的另一個內(nèi)項,據(jù)此寫出比例,進而化成最簡比.
解答:如果a=b,
那么a:b=:1=2:3;
故答案為:2,3.
點評:此題考查把給出的等式改寫成比例式,要注意:把等式一邊相乘的兩個數(shù)當成比例的兩個外項(或內(nèi)項),則另一邊相乘的兩個數(shù)就當做比例的兩個內(nèi)項(或外項).
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

(2012?廊坊)已經(jīng)a=
23
b,則a:b=
2
2
3
3

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個小園孔,則一條直達底部的直吸管的最大長度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計.
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點有一只螞蟻,它想吃到與A點相對的B點處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個長方形,如圖五所示(A點的位置已經(jīng)給出),請在圖中中標出B點的位置并連接AB.
②小聰認為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長方形的底面A點有一只螞蟻,想吃到上底面與A點相對的B點處的食物,它沿長方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

下面各題中的兩個量,( 。┏烧壤

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:單選題

下面各題中的兩個量,_____成正比例.


  1. A.
    一條路的長度一定,已經(jīng)修好的部分和剩下的部分
  2. B.
    正方形的邊長和面積
  3. C.
    圓柱體的體積一定,它的底面積和高
  4. D.
    若2a=b,則a和b

查看答案和解析>>

同步練習冊答案