如圖梯形中,AD=6厘米,且△AOD的AD邊上的高是1.5厘米,△BOC的面積是18平方厘米,△DOC的面積是9平方厘米,求梯形ABCD的面積.
分析:由題意可知:三角形ABC與三角形BDC等底等高,根據(jù)等量關(guān)系可知,△ABO的面積=△COD的面積,根據(jù)三角形的面積公式:S=ab÷2,可求△AOD的面積,再將四個三角形的面積相加即可求解.
解答:解:9×2+18+6×1.5÷2,
=18+18+4.5,
=40.5(平方厘米).
答:梯形ABCD的面積是40.5平方厘米.
點評:解答此題主要根據(jù):等底等高的兩個三角形,它們的面積相等.同時考查了三角形的面積計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

看圖計算.

(1)如圖1,已知正方形的面積為64平方厘米,求陰影部分的面積.
(2)如圖2,在直角梯形ABCD中,AB=8,BC=14厘米,AD=10厘米,△DCF的面積是梯形ABCD面積的
1
4
,△ADE的面積是梯形ABCD面積的
3
8
,求陰影部分面積.
(3)如圖3,正方形ABCD的邊長是6厘米,E、F分別是AB、BC的中點,求陰影部分的面積?
(4)如圖4,有一個底面周長為6.28厘米的圓柱體,被斜著截去一段,現(xiàn)在的體積是多少?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖所示,在梯形ABCD中,E是AB的中點,F(xiàn)是AD的中點.已知△BCE的面積為6平方厘米,△ABF的面積為4平方厘米,則梯形ABCD的面積為
20
20
平方厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點移動距離為x(x>0)
(1)△EFG的邊長是
x
x
(用含有x的代數(shù)式表示),當x=2時,點G的位置在
D點
D點
;
(2)若△EFG于梯形ABCD重疊部分面積是y求
①當0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當2<x≤6時,y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3
3
,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向B點勻速運動,到達B點后
立刻以原速度沿BM返回點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P、Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P、Q同時出發(fā),當點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒
(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍)
(2)當BP=1時,求△EPQ與梯形ABCD重疊部分的面積
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續(xù)一個時間段?若能,直接寫出t的取值范圍;若不能請說明理由.

查看答案和解析>>

同步練習(xí)冊答案