分析:(1)依據(jù)等式的性質(zhì),方程兩邊同時除以2,再同時減3求解,
(2)依據(jù)等式的性質(zhì),方程兩邊同時除以8,再同時加13求解,
(3)依據(jù)等式的性質(zhì),方程兩邊同時除以1.5,再同時加x,最后同時減3求解,
(4)依據(jù)等式的性質(zhì),方程兩邊同時除以0.5,再同時減6求解,
(5)依據(jù)等式的性質(zhì),方程兩邊同時乘3,再同時減3.2求解,
(6)依據(jù)等式的性質(zhì),方程兩邊同時乘0.4,再同時加0.6求解.
解答:解:(1)2(x+3)=32
2(x+3)÷2=32÷2
x+3-3=16-3
x=13;
(2)8(x-13)=64
8(x-13)÷8=64÷8
x-13+13=8+13
x=21;
(3)1.5(7-x)=4.5
1.5(7-x)÷1.5=4.5÷1.5
7-x+x=3+x
7-3=3+x-3
x=4;
(4)0.5(6+x)=9
0.5(6+x)÷0.5=9÷0.5
6+x-6=18-6
x=12;
(5)(x+3.2)÷3=8
(x+3.2)÷3×3=8×3
x+3.2-3.2=24-3.2
x=20.8;
(6)(x-0.6)÷0.4=1.2
(x-0.6)÷0.4×0.4=1.2×0.4
x-0.6+0.6=0.48+0.6
x=1.08.
點評:本題考查知識點:依據(jù)等式的性質(zhì)解方程,解方程時注意(1)方程能化簡先化簡,(2)等號要對齊.