精英家教網 > 小學數學 > 題目詳情
桌面上有10元、5元、1元的紙幣12張,共72元.三種紙幣張數的比為( 。
分析:根據所給信息得出兩個數量等量關系:(1)10元的張數+5元的張數+1元的張數=12,;(2)10×張數+5×張數+1×張數=72.然后代入數取值.
解答:解:設10元、5元、1元三種紙幣的張數分別為a,b,c,
10a+5b+c=72
a+b+c=12
a,b,c為正整數,然后把ABCD四個選項,代數試數:
A:2+6+4=12(張),4×10+6×5+2=72(元)符合要求.
B,6+4+2=12(張),6×10+4×5+2=82(元)不符合條件;
C,6+2+4=12(張),6×10+2×5+4=74(元)不符合條件;
D.2+6+4=12(張),2×10+6×10+4=84(元)不符合條件.
所以,a=4,b=6,c=2.
則它們的比為4:6:2.
故選:A.
點評:此題主要考察根據題目信息列出等量關系式,由于數量提供不能用一元方程解答,小學生沒有學習過多元方程,不會解答,所以要通過代數試值來確定取值,要同時滿足兩個條件.
練習冊系列答案
相關習題

同步練習冊答案