4.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點,直線l:y=2x關(guān)于點M(0,m)(m≠0)對稱的直線為l'.若直線l'上存在點P使得∠APB=90°,求實數(shù)m的最大值.

分析 (1)由ρ=4cosθ得ρ2=4ρcosθ,即可求出圓C的直角坐標(biāo)方程;
(2)l:y=2x關(guān)于點M(0,m)的對稱直線l'的方程為y=2x+2m,而AB為圓C的直徑,故直線l'上存在點P使得∠APB=90°的充要條件是直線l'與圓C有公共點,即可求實數(shù)m的最大值.

解答 解:(1)由ρ=4cosθ得ρ2=4ρcosθ,即x2+y2-4x=0,即圓C的標(biāo)準(zhǔn)方程為(x-2)2+y2=4.
(2)l:y=2x關(guān)于點M(0,m)的對稱直線l'的方程為y=2x+2m,而AB為圓C的直徑,故直線l'上存在點P使得∠APB=90°的充要條件是直線l'與圓C有公共點,故$\frac{{|{4+2m}|}}{{\sqrt{5}}}≤2$,于是,實數(shù)m的最大值為$\sqrt{5}-2$.

點評 本題考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查直線與圓的位置關(guān)系的運用,考查學(xué)生轉(zhuǎn)化問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,D、E是BC邊上兩點,BD、BA、BC構(gòu)成以2為公比的等比數(shù)列,BD=6,∠AEB=2∠BAD,AE=9,則三角形ADE的面積為( 。
A.31.2B.32.4C.33.6D.34.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|y=lg(x-1)},B={x|2${\;}^{{x}^{2}-2x}$<1},則A∩B=( 。
A.{x|x>1}B.{x|x>0}C.{x|0<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的s=( 。
A.5B.20C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)圖象的對稱軸方程;
(2)討論函數(shù)f(x)在$[0,\frac{π}{2}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓C:x2+y2-4x+m=0與圓${({x-3})^2}+{({y+2\sqrt{2}})^2}=4$外切,點P是圓C一動點,則點P到直線3x-4y+4=0的距離的最大值為( 。
A.$2\sqrt{2}$B.3C.4D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2x的值域為A,g(x)=lnx的定義域為B,則( 。
A.A∩B=(0,1)B.A∪B=RC.B?AD.A=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(Ⅰ)線段AB上是否存在點M,使AB⊥平面PCM?并給出證明.
(Ⅱ)求直線PB與平面PCD的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,∠B=$\frac{π}{6}$,AC=1,點D在邊AB上,且DA=DC,BD=1,則∠DCA=$\frac{π}{3}$或$\frac{π}{9}$.

查看答案和解析>>

同步練習(xí)冊答案