下列圖案中,可以由一個(gè)“基本圖形”連續(xù)旋轉(zhuǎn)45°得到的是


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:每個(gè)圖形都是旋轉(zhuǎn)對(duì)稱圖形,計(jì)算出最小的旋轉(zhuǎn)角,即可作出判斷.
解答:A、至少旋轉(zhuǎn)=120°,故選項(xiàng)錯(cuò)誤;
B、至少旋轉(zhuǎn)=72°,故選項(xiàng)錯(cuò)誤;
C、至少旋轉(zhuǎn)=60°,故選項(xiàng)錯(cuò)誤;
D、至少旋轉(zhuǎn)=45°,故選項(xiàng)正確.
故選D.
點(diǎn)評(píng):本題主要考查了中心對(duì)稱圖形的定義,正確理解定義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

圖1是由若干個(gè)小圓圈堆成的一個(gè)圖案,最上面一層有2個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.完成下列問題:
(1)每一層的圓圈個(gè)數(shù)與層數(shù)的關(guān)系為:
層數(shù) 1 2 3 n
每層圓圈個(gè)數(shù)
(2)為求圖1中圓圈的總數(shù),可用如下方法:
將圖1倒置后與原圖1拼成圖2的形狀,則圖2中每層圓圈個(gè)數(shù)為
n+3
n+3
;n層圓圈總數(shù)為
n
n
;由于圖2中圓圈個(gè)數(shù)是圖1中的
2
2
倍,可以得出圖1中所有圓圈的個(gè)數(shù)為
n(n+3)
2
n(n+3)
2


(3)假設(shè)圖1中的圓圈共有10層,我們自上往下,在每個(gè)圓圈中都按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,…,則最底層從左邊數(shù)第三個(gè)圓圈中的數(shù)是
57
57

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

圖1是由若干個(gè)小圓圈堆成的一個(gè)圖案,最上面一層有2個(gè)圓圈,以下各層均比上一層多一個(gè)圓圈,一共堆了n層.完成下列問題:
(1)每一層的圓圈個(gè)數(shù)與層數(shù)的關(guān)系為:
層數(shù)123n
每層圓圈個(gè)數(shù)
(2)為求圖1中圓圈的總數(shù),可用如下方法:
將圖1倒置后與原圖1拼成圖2的形狀,則圖2中每層圓圈個(gè)數(shù)為________;n層圓圈總數(shù)為________;由于圖2中圓圈個(gè)數(shù)是圖1中的________倍,可以得出圖1中所有圓圈的個(gè)數(shù)為________.

(3)假設(shè)圖1中的圓圈共有10層,我們自上往下,在每個(gè)圓圈中都按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,…,則最底層從左邊數(shù)第三個(gè)圓圈中的數(shù)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案