【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,過點A作AD⊥CP,垂足為D,直線AD交CQ于E.
(1)如圖①,當∠PCQ在∠ACB內(nèi)部時,求證:AD+BE=DE;
(2)如圖②,當CQ在∠ACB外部時,則線段AD、BE與DE的關(guān)系為_____;
(3)在(1)的條件下,若CD=6,S△BCE=2S△ACD,求AE的長.
【答案】(1)見解析 (2)AD=BE+DE (3)8
【解析】試題分析:(1)延長DA到F,使DF=DE,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“邊角邊”證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得證;
(2)在AD上截取DF=DE,然后根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“邊角邊”證明△ACF和△BCE全等,根據(jù)全等三角形的即可證明AF=BE,從而得到AD=BE+DE;
(3)根據(jù)等腰直角三角形的性質(zhì)求出CD=DF=DE,再根據(jù)等高的三角形的面積的比等于底邊的比求出AF=2AD,然后求出AD的長,再根據(jù)AE=AD+DE代入數(shù)據(jù)進行計算即可得解.
試題解析:(1)證明:如圖①,延長DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;
(2)解:如圖②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;
故答案為:AD=BE+DE.
(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=×6=2,∴AE=AD+DE=2+6=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一病人發(fā)高燒進醫(yī)院進行治療,醫(yī)生給他開了藥并掛了水,同時護士每隔1小時對病人測體溫,及時了解病人的好轉(zhuǎn)情況,現(xiàn)護士對病人測體溫的變化數(shù)據(jù)如下表:
時 間 | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 |
體溫(與前一次比較) | 升0.2 | 降1.0 | 降0.8 | 降1.0 | 降0.6 | 升0.4 | 降0.2 | 降0.2 | 降0 |
注:病人早晨進院時醫(yī)生測得病人體溫是40.2℃。
問:(1)病人什么時候體溫達到最高,最高體溫是多少?
(2)病人中午12點時體溫多高?
(3)病人幾點后體溫穩(wěn)定正常?(正常體溫是37℃)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律:將連續(xù)的偶數(shù)2,4,6,8,…,排成如表:
(1)十字框中的五個數(shù)的和與中間的數(shù)16有什么關(guān)系?
(2)移動十字框,設(shè)中間的數(shù)為x,用代數(shù)式表示十字框中的五個數(shù)的和;
(3)若將十字框上下左右移動,可框住另外的五個數(shù),其它五個數(shù)的和能等于2560嗎?若能,寫出這五個數(shù),若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是( 。
A. y= B. y= C. y= D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為、、)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形紙片.點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點分別落在點處,
(1)若,則的度數(shù)為 °;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸上,一動點從原點出發(fā),沿直線以每秒鐘個單位長度的速度來回移動,其移動方式是先向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度,再向左移動個單位長度,又向右移動個單位長度…
(1)求出秒鐘后動點所處的位置;
(2)如果在數(shù)軸上還有一個定點,且與原點相距20個單位長度,問:動點從原點出發(fā),可能與點重合嗎?若能,則第一次與點重合需多長時間?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定x的一元一次方程ax=b的解為b﹣a,則稱該方程是“差解方程”,例如:3x=4.5的解為4.5﹣3=1.5,則該方程3x=4.5就是“差解方程”,請根據(jù)上述規(guī)定解答下列問題:
(1)已知關(guān)于x的一元一次方程4x=m是“差解方程”,則m=______.
(2)已知關(guān)于x的一元一次方程4x=ab+a是“差解方程”,它的解為a,則a+b=_____.
(3)已知關(guān)于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代數(shù)式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A,B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.
【試題再現(xiàn)】如圖②,在△ABC中,∠ACB=90°,直角頂點C在直線DE上,分別過點A,B作AD⊥DE于點D,BE⊥DE于點E.求證:△ADC∽△CEB.
【問題探究】在圖①中,若∠A=∠B=∠DEC=40°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由.
【深入探究】如圖③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于點P,過點P作AB⊥AD于點A,交BC于點B.
(1)請證明點P是四邊形ABCD的邊AB上的一個強相似點.
(2)若AD=3,BC=5,試求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com