【題目】如圖,小玲家在某24層樓的頂樓,對面新建了一幢28米高的圖書館,小玲在樓頂處看圖書館樓頂處和樓底處的俯角分別是,則兩樓之間的距離是__________米.

【答案】14+1

【解析】

如圖,延長CBAM于點E,設AE=x.通過解RtABE、RtACE分別求得BE、CE的長度,然后結合圖形中相關線段的和差關系列出關于x的方程,通過解方程求得x的值;

如圖,延長CBAM于點E,設AE=x


由題意知,在RtABE中,∠EAB=45°,
BE=AE=x
RtACE中,∠EAC=60°
CE=x,
CE-BE=28
x-x=28,
解得x==14+1)(米),
∴兩樓間的距離約為14+1)米;

故答案為:14+1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】丁老師為了解所任教的兩個班的學生數(shù)學學習情況,對數(shù)學進行了一次測試,獲得了兩個班的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.①AB兩班學生(兩個班的人數(shù)相同)數(shù)學成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成 5 組:x60,60≤x7070≤x80,80≤x90,90≤x≤100):

A、B兩班學生測試成績在80≤x90這一組的數(shù)據(jù)如下:

A 班:80 80 82 83 85 85 86 87 87 87 88 89 89

B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89

A、B兩班學生測試成績的平均數(shù)、中位數(shù)、方差如下:

平均數(shù)

中位數(shù)

方差

A

80.6

m

96.9

B

80.8

n

153.3

根據(jù)以上信息,請寫出表中 m、n的值____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016423日是我國第一個“全民閱讀日”某校開展了“建設書香校園,捐贈有益圖書”活動.我們在參加活動的所有班級中,隨機抽取了一個班,已知這個班是八年級5班,全班共50名學生.現(xiàn)將該班捐贈圖書情況的統(tǒng)計結果,繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)以上信息,解答下列問題:

1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

2)求八年級5班平均每人捐贈了多少本書?

3)若該校八年級共有800名學生,請你估算這個年級學生共可捐贈多少本書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一前夕,某幼兒園園長到廠家選購A、B兩種品牌的兒童服裝,每套A品牌服裝進價比B品牌服裝每套進價多25元,用2000元購進A種服裝數(shù)量是用750元購進B種服裝數(shù)量的2倍.

AB兩種品牌服裝每套進價分別為多少元?

該服裝A品牌每套售價為130元,B品牌每套售價為95元,服裝店老板決定,購進B品牌服裝的數(shù)量比購進A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過1200元,則最少購進A品牌的服裝多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州某風景區(qū)門票價格如圖所示,有甲、乙兩個旅行團隊,計劃在端午節(jié)期間到該景點游玩,兩團隊游客人數(shù)之和為100人,若乙團隊人數(shù)不超過40人,甲團隊人數(shù)不超過80人,設甲團隊人數(shù)為人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為元.

1)直接寫出關于的函數(shù)關系式,并寫出自變量的取值范圍;

2)計算甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個月實行門票打五折的優(yōu)惠(打折期間不售團體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經過調研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運營成本也隨之增加,景區(qū)運營成本(萬元)與兩個月游客總人數(shù)(萬人)之間滿足函數(shù)關系式:;兩個月游客總人數(shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡預約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運營成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線的頂點A的坐標為(1,4),拋物線與x軸相交于B、C兩點,y軸交于點E03).

1)求拋物線的表達式;

2)已知點F0,﹣3),在拋物線的對稱軸上是否存在一點G,使得EG+FG最小,如果存在求出點G的坐標;如果不存在,請說明理由

3)如圖2連接AB,若點P是線段OE上的一動點過點P作線段AB的垂線,分別與線段AB、拋物線相交于點M、N(點M、N都在拋物線對稱軸的右側),MN最大時,求△PON的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:

如圖1,ABC中,∠ACB=90°,點DAB上,且∠BAC=2DCB,求證:AC=AD.

小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:

方法1:如圖2,作AE平分∠CAB,與CD相交于點E.

方法2:如圖3,作∠DCF=DCB,與AB相交于點F.

(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.

用學過的知識或參考小明的方法,解決下面的問題:

(2)如圖4,ABC中,點DAB上,點EBC上,且∠BDE=2ABC,點FBD上,且∠AFE=BAC,延長DC、FE,相交于點G,且∠DGF=BDE.

①在圖中找出與∠DEF相等的角,并加以證明;

②若AB=kDF,猜想線段DEDB的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加學校組織的智力競答活動,競賽中有兩道單選題完全不會.這兩道單選題各有ABC三個選項,第一道單選答案是B.第二道單選答案是C.最終兩道題小明隨機各寫了一個答案

1)小明答對第一道題的概率是   

2)請用樹狀圖或者列表求出小明兩道題都答對的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅社有100張床位,若每張床位每晚收費100元,床位可全部租出,若每張床位每晚收費提高20元,則減少10張床位租出;若每張床位每晚收費再提高20元,則再減少10張床位租出.以每次提高20元的這種方法變化下去,為了投資少而收入最多,每張床位每晚應提高(

A.60B.50C.40D.40元或60

查看答案和解析>>

同步練習冊答案