(2004•四川)已知相交兩圓的半徑分別是5和8,那么這兩圓的圓心距d的取值范圍是( )
A.d>3
B.d<13
C.3<d<13
D.d=3或d=13
【答案】分析:根據(jù)兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系進行判斷:(P表示圓心距,R,r分別表示兩圓的半徑)
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
解答:解:由于兩圓相交,則圓心距的長度在兩圓的半徑的差與和之間.
∵相交兩圓的半徑分別是5和8,
8-5=3,5+8=13,
∴3<d<13.
故選C.
點評:本題利用了兩圓相交,圓心距的長度在兩圓的半徑的差與和之間求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負半軸交于點D,求經(jīng)過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負半軸交于點D,求經(jīng)過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

(2004•四川)已知反比例函數(shù)(k≠0)和一次函數(shù)y=-x-6.
(1)若一次函數(shù)和反比例函數(shù)的圖象交于點(-3,m),求m和k的值;
(2)當k滿足什么條件時,這兩個函數(shù)的圖象有兩個不同的交點;
(3)當k=-2時,設(shè)(2)中的兩個函數(shù)圖象的交點分別為A、B,試判斷此時A、B兩點分別在第幾象限?∠AOB是銳角還是鈍角?(只要求直接寫出結(jié)論)

查看答案和解析>>

同步練習冊答案