【題目】工人師傅童威準備在一塊長為60,寬為48的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路.四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的8倍.若四條小路所占面積為160.設(shè)小路的寬度為x,依題意列方程,化為一般形式為_________

【答案】16x2+108x-160=0

【解析】

設(shè)小路的寬度為x米,則小正方形的邊長為8x米,根據(jù)小路的橫向總長度(60+8x)米和縱向總長度(48+8x)米,結(jié)合矩形的面積公式得到:(60+8x+48+8xx=160.進行整理即可.

設(shè)小路的寬度為x米,則小正方形的邊長為8x米,

依題意得:(60+8x+48+8xx=160

整理得:16x2+108x-160=0

故答案為:16x2+108x-160=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,、、分別是菱形ABCD的兩條對角線長和邊長,這時我們把關(guān)于的形如的一元二次方程稱為菱系一元二次方程.請解決下列問題:

1)填空:,時,

用含,的代數(shù)式表示值,

2)求證:關(guān)于菱系一元二次方程必有實數(shù)根;

3)若菱系一元二次方程的一個根,且菱形的面積是25,BE是菱形ABCDAD邊上的高,求BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,不等邊ABC內(nèi)接于,I是其內(nèi)心,AIOIAB2,BC3,則AC的長為(

A. 4B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;

(2)設(shè)方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)已知∠MAN=135°,正方形ABCD繞點A旋轉(zhuǎn).

1)當正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點A除外)時,AMAN分別與正方形ABCD的邊CB,CD的延長線交于點MN,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關(guān)系是

如圖2,若BM≠DN,請判斷中的數(shù)量關(guān)系是否仍成立?若成立,請給予證明;若不成立,請說明理由;

2)如圖3,當正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MNDN的長度為三邊長的三角形是何種三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x24(k1)x4k20有兩個實數(shù)根x1、x2

(1) 求k的取值范圍

(2) 若x1x22|x1x2|=4,求k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____;

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊AB上,點F在邊CD上,如果添加一個條件,使△ADE≌△CBF,那么添加的條件不能為( 。

A.DEBFB.AECFC.BEDFD.ADE=∠CBF

查看答案和解析>>

同步練習(xí)冊答案