【題目】如圖,直線軸、軸分別交于兩點(diǎn),的中點(diǎn),上一點(diǎn),四邊形是菱形,則面積為___________.

【答案】

【解析】

延長(zhǎng)DEOAF,如圖,先利用一次函數(shù)解析式確定B0,4),A(6,0),利用三角函數(shù)得到∠OBA=60°,接著根據(jù)菱形的性質(zhì)判定BCD為等邊三角形,則∠BCD=COE=60°,所以∠EOF=30°,則,然后根據(jù)三角形面積公式計(jì)算.

解:延長(zhǎng)DEOAF,如圖,


當(dāng)x=0時(shí),,則B0,4),

當(dāng)y=0時(shí),,解得x=6,A(6,0)

RtAOB中,

∴∠OBA=60°,
COB的中點(diǎn),
OC=CB=3,
∵四邊形OEDC是菱形,
CD=BC=DE=CE=3,CDOE
∴△BCD為等邊三角形,
∴∠BCD=60°,
∴∠COE=60°,
∴∠EOF=30°

OAE的面積

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC (BCAD),∠D=90°,∠ABE=45°,BCCD,

AE=5,CE=2,BC的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1,O2O3組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2017秒時(shí)點(diǎn)P的坐標(biāo)是(  )

A. (2016,0) B. (2017,1) C. (2017,-1) D. (2018,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角△ABCABC=90°,點(diǎn)PAC,將△ABP繞頂點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△CBQ

1)求∠PCQ的度數(shù);

2)當(dāng)AB=4APPC=13時(shí),PQ的大小;

3)當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí)(P不與A重合)請(qǐng)寫出一個(gè)反映PA2,PC2PB2之間關(guān)系的等式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問(wèn)有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問(wèn)這塊沙田面積有多大?題中是我國(guó)市制長(zhǎng)度單位,1=500米,則該沙田的面積為(  )

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解油價(jià)上漲給出租車行業(yè)帶來(lái)的成本壓力,某市擬調(diào)整出租車運(yùn)價(jià),調(diào)整方案見(jiàn)下列表格及圖象(其中為常數(shù))

行駛路程

收費(fèi)標(biāo)準(zhǔn)

調(diào)價(jià)前

調(diào)價(jià)后

不超過(guò)的部分

起步價(jià)7

起步價(jià)

超過(guò)不超出的部分

每公里2

每公里

超出的部分

每公里

設(shè)行駛路程為,調(diào)價(jià)前的運(yùn)價(jià)(元),調(diào)價(jià)后運(yùn)價(jià)(元),如圖,折線表示之間的函數(shù)關(guān)系式,線段表示當(dāng)時(shí),的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:

①填空: ,

②當(dāng)時(shí),求的關(guān)系,補(bǔ)充圖中該函數(shù)的圖像;

③函數(shù)的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說(shuō)明該點(diǎn)的實(shí)際意義;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校打算招聘英語(yǔ)教師。對(duì)應(yīng)聘者進(jìn)行了聽(tīng)、說(shuō)、讀、寫的英語(yǔ)水平測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)(百分制)如下表所示。

1)如果學(xué)校想招聘說(shuō)、讀能力較強(qiáng)的英語(yǔ)教師,聽(tīng)、說(shuō)、讀、寫成績(jī)按照2431的比確定,若在甲、乙兩人中錄取一人,請(qǐng)計(jì)算這兩名應(yīng)聘者的平均成績(jī)(百分制)。從他們的成績(jī)看,應(yīng)該錄取誰(shuí)?

2)學(xué)校按照(1)中的成績(jī)計(jì)算方法,將所有應(yīng)聘者的最后成績(jī)繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最后左邊一組分?jǐn)?shù)為:)。

①參加該校本次招聘英語(yǔ)教師的應(yīng)聘者共有______________人(直接寫出答案即可)。

②學(xué)校決定由高分到低分錄用3名教師,請(qǐng)判斷甲、乙兩人能否被錄用?并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D. 點(diǎn)EBC上,EFAB,垂足為F,∠1=2.

(1)試說(shuō)明DGBC的理由;

(2)如果∠B54°,且∠ACD=35°,求的∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索規(guī)律:將連續(xù)的偶24,68,,排成如表:

1)請(qǐng)你求出十字框中的五個(gè)數(shù)的和;

2)設(shè)中間的數(shù)為x,請(qǐng)你用含x的式子表示十字框中的五個(gè)數(shù)的和;

3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),這五個(gè)數(shù)的和能等于2018嗎?如能,寫出這五個(gè)數(shù),如不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案