【題目】如圖,在菱形中,,的中點.過點,垂足為.將沿點到點的方向平移,得到.設(shè)、分別是、的中點,當點與點重合時,四邊形的面積為________

【答案】28

【解析】

如圖,連接BD,DFDFPP′H,首先證明四邊形PP′CD是平行四邊形,再證明DFPP′,求出DH即可解決問題.

如圖,連接BD,DFDFPP′H,


根據(jù)題意PP′=AA′=AB=CD,PP′//AA′//CD,

∴四邊形PP′CD是平行四邊形,

∵四邊形ABCD是菱形,∠A=60°

ABD是等邊三角形,

AF=FB,

DFAB,DFPP′,

RtAEF中, ∵∠AEF=90°,∠A=60°,AF=4,

AE=2,EF=2,

PE=PF=

RtPHF中, ∵∠FPH=30°,PF=

HF=PF=,

DF=4

DH=4-=,

∴平行四邊形PP′CD的面積=×8=28,

故答案為:28.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB30),與y軸交于點C0,3).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段 AB 的長為 4C AB 上一個動點,分別以 ACBC 為斜邊在 AB 的同側(cè)作兩個等腰直角三角形 ACD BCE, 連結(jié) DE DE 長的最小值是( )

A. B. 2C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.

請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

1)本次被調(diào)査的家庭有   戶,表中 m   

2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在   組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是   度;

3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?

組別

家庭年文化教育消費金額x(元)

戶數(shù)

A

x≤5000

36

B

5000x≤10000

m

C

10000x≤15000

27

D

15000x≤20000

15

E

x20000

30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,有一矩形ABCD,其三個頂點的坐標分別為A(2,0),B(8,0),C(83),將直線l以每秒3個單位的速度向右運動,設(shè)運動時間為t秒.

1)當t 時,直線l經(jīng)過點A(直接填寫答案);

2)設(shè)直線l掃過矩形ABCD的面積為S,試求S0St的函數(shù)關(guān)系式;

3)在第一象限有一半徑為3、且與兩坐標軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運動,如圖2,則當t為何值時,直線l與⊙M相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑,上一點,于點,弦交于點.過點的切線交的延長線于點,過點的切線交的延長線于點

1)求證:為等腰三角形;

2)若,的半徑為3,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(3,0),點C的坐標為(04),OABC為矩形,反比例函數(shù) 的圖象過AB的中點D,且和BC相交于點E,F為第一象限的點,AF12,CF13

1)求反比例函數(shù)和直線OE的函數(shù)解析式;

2)求四邊形OAFC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BDAGCEAF,BD、CE分別是∠ABC和∠ACB的角平分線,若BF3,ED2,GC5,則△ABC的周長為_____

查看答案和解析>>

同步練習冊答案