【題目】如圖,在菱形中,,,是的中點.過點作,垂足為.將沿點到點的方向平移,得到.設(shè)、分別是、的中點,當點與點重合時,四邊形的面積為________.
【答案】28
【解析】
如圖,連接BD,DF,DF交PP′于H,首先證明四邊形PP′CD是平行四邊形,再證明DF⊥PP′,求出DH即可解決問題.
如圖,連接BD,DF,DF交PP′于H,
根據(jù)題意PP′=AA′=AB=CD,PP′//AA′//CD,
∴四邊形PP′CD是平行四邊形,
∵四邊形ABCD是菱形,∠A=60°,
∴△ABD是等邊三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中, ∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中, ∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF=4,
∴DH=4-=,
∴平行四邊形PP′CD的面積=×8=28,
故答案為:28.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段 AB 的長為 4,C 為 AB 上一個動點,分別以 AC、BC 為斜邊在 AB 的同側(cè)作兩個等腰直角三角形 ACD 和 BCE, 連結(jié) DE, 則 DE 長的最小值是( )
A. B. 2C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)本次被調(diào)査的家庭有 戶,表中 m= ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在 組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是 度;
(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?
組別 | 家庭年文化教育消費金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,有一矩形ABCD,其三個頂點的坐標分別為A(2,0),B(8,0),C(8,3),將直線l:以每秒3個單位的速度向右運動,設(shè)運動時間為t秒.
(1)當t= 時,直線l經(jīng)過點A(直接填寫答案);
(2)設(shè)直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數(shù)關(guān)系式;
(3)在第一象限有一半徑為3、且與兩坐標軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運動,如圖2,則當t為何值時,直線l與⊙M相切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為直徑,是上一點,于點,弦與交于點.過點作的切線交的延長線于點,過點作的切線交的延長線于點.
(1)求證:為等腰三角形;
(2)若,的半徑為3,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(3,0),點C的坐標為(0,4),OABC為矩形,反比例函數(shù) 的圖象過AB的中點D,且和BC相交于點E,F為第一象限的點,AF=12,CF=13.
(1)求反比例函數(shù)和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BD⊥AG,CE⊥AF,BD、CE分別是∠ABC和∠ACB的角平分線,若BF=3,ED=2,GC=5,則△ABC的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com