【題目】如圖,在等邊△ABC中,AC=10,點O在AC上,且AO=3,點P是AB上一動點,連結OP,將線段OP繞點O逆時針旋轉60°得到線段OD.要使點D恰好落在BC上,則AP的長是 ( )
A. 5B. 6C. 7D. 9
【答案】C
【解析】
先計算出OC=7,根據(jù)等邊三角形的性質得∠A=∠C=60°,再根據(jù)旋轉的性質得OD=OP,∠POD=60°,根據(jù)三角形內角和和平角定義得∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,利用等量代換可得∠2=∠3,然后根據(jù)“AAS”判斷△AOP≌△CDO,則AP=CO=7.
解:如圖,
∵AC=10,AO=3,
∴OC=7,
∵△ABC為等邊三角形,
∴∠A=∠C=60°,
∵線段OP繞點D逆時針旋轉60゜得到線段OD,要使點D恰好落在BC上,
∴OD=OP,∠POD=60°,
∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,
∴∠1+∠2=120°,∠1+∠3=120°,
∴∠2=∠3,
在△AOP和△CDO中,
∴△AOP≌△CDO,
∴AP=CO=7,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當x=1時,y=0;當x=-3時,y=4.
(1)求y與x的函數(shù)關系式,并說明此函數(shù)是什么函數(shù);
(2)當x=3時,求y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.
(1)如圖1,當t=3時,求DF的長.
(2)如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在小正方形的頂點上,這樣的三角形叫做格點三角形.
(1)填空:∠ABC= ;
(2)請你在圖中找出所有滿足條件的點D(用黑圓點表示,標上D),使得以D、E、F為頂點的格點三角形與△ABC全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某淘寶商家計劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實際每天的銷售量與計劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實行每日計件工資制,每銷售一輛車可得40元,若超額完成任務,則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖1)按兩種不同的方式,不重疊地放在一個底面為長方形(一邊長為4)的盒子底部(如圖2、圖3),盒子底面未被卡片覆蓋的部分用陰影表示.已知陰影部分均為長方形,且圖2與圖3陰影部分周長之比為5:6,則盒子底部長方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是2015年12月月歷.
(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , , .
(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2= .
(3)當(1)中被框住的4個數(shù)之和等于76時,x的值為多少?
(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com