【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端DD、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG10米,BGHG,CHAH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6

【答案】63米.

【解析】試題分析:作BEDH,知GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°xCE=CHEH=tan55°x﹣10,根據(jù)BE=DE可得關(guān)于x的方程,解之可得.

試題解析:解:如圖,作BEDH于點(diǎn)E,則GH=BE、BG=EH=10,設(shè)AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°x,CE=CHEH=tan55°x﹣10,∵∠DBE=45°,BE=DE=CE+DC,即43+x=tan55°x﹣10+35,解得:x≈45,CH=tan55°x=1.4×45=63

答:塔桿CH的高為63米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 內(nèi)一點(diǎn), 相交于 兩點(diǎn),且與 分別相切于點(diǎn) 、 .連接 、

(1)求證:

(2)已知 .求四邊形 是矩形時(shí) 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察圖形,解答問題:

1)按下表已填寫的形式填寫表中的空格:





三個(gè)角上三個(gè)數(shù)的積

(-1×2=-2

(-3×(-4×(-5)=-60


三個(gè)角上三個(gè)數(shù)的和

1+(-1)+22

(-3)+(-4)+(-5)=-12


積與和的商

(-2÷2=-1



2)請用你發(fā)現(xiàn)的規(guī)律求出圖中的數(shù)x和圖中的數(shù)y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值: 其中x的值從不等式組的整數(shù)解中選取.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長,根據(jù)企業(yè)財(cái)報(bào),某網(wǎng)站得到如下統(tǒng)計(jì)表:

(1)請選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達(dá)到675億件,請估計(jì)其中“電商包裹件”約為多少億件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A,B,C的位置如圖,點(diǎn)C是線段AB的中點(diǎn),點(diǎn)A表示的數(shù)比點(diǎn)C表示的數(shù)的兩倍還大3,點(diǎn)B和點(diǎn)C表示的數(shù)是互為相反數(shù),點(diǎn)C表示的數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是平角,OM、ON分別是∠AOC、∠BOD的平分線,且∠AOC=40°,BON=25°.

:(1)COD的度數(shù);

(2)MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtΔABC,C=90°,D為BC的中點(diǎn).以AC為直徑的圓O交AB于點(diǎn)E.

(1)求證:DE是圓O的切線.

(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOC與∠BOD具有公共頂點(diǎn),∠COD是兩個(gè)角疊合的部分.

1)若∠AOC=∠BOD90°,觀察圖形(一)并完成下列問題:

①直接寫出圖中兩個(gè)相等的銳角:      ;

②如果∠COD40°,則∠AOB   ,若∠AOB150°,則∠COD   ;

③猜想∠AOB+DOC   °,請說明理由.

2)探究圖形(二):若∠AOC60°,∠BOD50°,則∠AOB+DOC   °,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案