精英家教網(wǎng)如圖,已知Rt△ABC,D1是斜邊AB的中點,過D1作D1E1⊥AC于E1,連接BE1交CD1于D2;過D2作D2E2⊥AC于E2,連接BE2交CD1于D3;過D3作D3E3⊥AC于E3,…,如此繼續(xù),可以依次得到點E4、E5、…、En,分別記△BCE1、△BCE2、△BCE3…△BCEn的面積為S1、S2、S3、…Sn.則Sn=
 
S△ABC(用含n的代數(shù)式表示).
分析:根據(jù)直角三角形的性質(zhì)以及相似三角形的性質(zhì).再利用在△ACB中,D2為其重心可得D2E1=
1
3
BE1,然后從中找出規(guī)律即可解答.
解答:解:易知D1E1∥BC,∴△BD1E1與△CD1E1同底同高,面積相等,以此類推;
根據(jù)直角三角形的性質(zhì)以及相似三角形的性質(zhì)可知:D1E1=
1
2
BC,CE1=
1
2
AC,S1=
1
2
BC•CE1=
1
2
BC×
1
2
AC=
1
2
×
1
2
AC•BC=
1
2
S△ABC
∴在△ACB中,D2為其重心,
∴D2E1=
1
3
BE1
∴D2E2=
1
3
BC,CE2=
1
3
AC,S2=
1
3
×
1
2
×AC•BC=
1
3
S△ABC,
∴D3E3=
1
4
BC,CE2=
1
4
AC,S3=
1
4
S△ABC…;
∴Sn=
1
n+1
S△ABC
故答案為:
1
n+1
點評:此題主要考查相似三角形的判定與性質(zhì)和三角形的重心等知識點,解決本題的關(guān)鍵是據(jù)直角三角形的性質(zhì)以及相似三角形的性質(zhì)得到第一個三角形的面積與原三角形的面積的規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點D,BD的垂直平分線分別交AB,BC于點E、F,CD=CG.
(1)請以圖中的點為頂點(不增加其他的點)分別構(gòu)造兩個菱形和兩個等腰梯形.那么,構(gòu)成菱形的四個頂點是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個頂點是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網(wǎng)E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點,PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點,連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點A做AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊答案