【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對學(xué)生的學(xué)習(xí)和生活都非常有益,某中學(xué)為了了解七年級學(xué)生的早鍛煉情況,校政教處在七年級隨機(jī)抽取了部分學(xué)生,并對這些學(xué)生通常情況下一天的早鍛煉時間(分鐘)進(jìn)行了調(diào)查.現(xiàn)把調(diào)查結(jié)果分成四組,如下表所示,同時,將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖.
請根據(jù)以上的信息,解答下列問題:
(1)扇形統(tǒng)計圖所在的圓心角的度數(shù)為 ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)已知該校七年級共有1000名學(xué)生,請你估計這個年級學(xué)生中約有多少人一天早鍛煉的時間不少于20分鐘.
【答案】(1)54°;(2)見解析;(3)850人.
【解析】
本題的⑴問先算出D所占百分比,再結(jié)合周角可以求出圓心角的度數(shù);⑵問先結(jié)合統(tǒng)計圖已知的百分比可以計算出樣本容量,再計算出C的頻數(shù),補(bǔ)全直方圖即可;⑶問,不少于20分鐘是C、D兩組,通過這兩組在樣本中占的百分比來估計總體的符合要求的人數(shù).
解:
(1)(1)360°×(1-5%-10%-70%)=54°;
(2)見右圖:
C組人數(shù)有:10÷5%×70%=140,
(3)估計 計這個年級學(xué)生中一天早鍛煉的時間
不少于20分鐘的學(xué)生有:
(人)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=,求⊙O的半徑和BF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了解青少年實力情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生進(jìn)行視力情況統(tǒng)計,分為視力正常、輕度近視、重度近視三種情況,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求這次被抽查的學(xué)生一共有多少人?
(2)求被抽查的學(xué)生中輕度近視的學(xué)生人數(shù),并將條形統(tǒng)計圖補(bǔ)充完整;
(3)若某地有萬名初中生,請估計視力不正常(包括輕度近視、重度近視)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲乙兩種型號的設(shè)備可供選購.經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花14萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花4萬元.
(1)直接寫出甲乙兩種型號設(shè)備每臺的價格分別為多少萬元;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過90萬元,你認(rèn)為該公司有幾種購買方案?
(3)在(2)的條件下,若該公司使用新設(shè)備進(jìn)行生產(chǎn),已知甲型設(shè)備每臺的產(chǎn)量為240噸/月,乙型設(shè)備每臺的產(chǎn)量為180噸/月,每月要求總產(chǎn)量不低于2040噸,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結(jié)果精確到個位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(6,n)。線段OA=5,E為x軸上一點,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,E是AC邊上一點,EH⊥AB,垂足為H,∠1=∠2.
(1)試說明DF∥AC;
(2)若∠A=38°,∠BCD=45°,求∠3的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com