【題目】如圖,在直角坐標(biāo)系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
【答案】4
【解析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過∠AOB的正弦值和余弦值求出AM和OM的長,即可得出點A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.
如圖,過點A作AM⊥x軸于點M,設(shè)OA=a,
∵∠AOB=60°,
∴AM=asin60°=a,OM=acos60°=a,
∴A點坐標(biāo)為(a,a),
∵點A在反比例函數(shù)y=圖象上,
∴a a=4,即a2=,
∵四邊形OACB是菱形,點F在邊BC上,
∴S△AOF=S菱形OBCA=OBAM=×a a=a2=×=4.
故答案為:4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年我國許多地方嚴(yán)重的“旱情”,為了鼓勵居民節(jié)約用水,區(qū)政府計劃實行兩級收費制,即每月用水量不超過14噸(含14噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過14噸時,超過部分每噸按市場調(diào)節(jié)價收費.小英家1月份用水20噸,交水費29元;2月份用水18噸,交水費24元.
(1)求每噸水的政府補貼優(yōu)惠價和市場調(diào)節(jié)價分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,寫出y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E(x0,yo),點F(x2.y2),點M(x1,y1)是線段EF的中點,則x1=,y1=.在平面直角坐標(biāo)系中有三個點A(1,﹣1),B(﹣1,﹣1),C(0,1),點P(0,2)關(guān)于點A的對稱點P1(即P,A,P1三點共線,且PA=P1A),P1關(guān)于點B的對稱點P2,P2關(guān)于點C的對稱點P3,…按此規(guī)律繼續(xù)以A,B,C三點為對稱點重復(fù)前面的操作.依次得到點P4,P5,P6…,則點P2020的坐標(biāo)是( 。
A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某縣建檔立卡貧困戶對精準(zhǔn)扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進(jìn)行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常滿意;B級:滿意;C級:基本滿意;D級:不滿意),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:
(1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)______.
(2)圖1中,∠α的度數(shù)是______,并把圖2條形統(tǒng)計圖補充完整.
(3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的人數(shù)約為多少戶?
(4)調(diào)查人員想從5戶建檔立卡貧困戶(分別記為)中隨機選取兩戶,調(diào)查他們對精準(zhǔn)扶貧政策落實的滿意度,請用列表或畫樹狀圖的方法求出選中貧困戶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線;
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,將線段AC繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC, ∠BCD的度數(shù)是 ;線段BD,AC之間的數(shù)量關(guān)系是 .
類比探究:
(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,將線段AC繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,請問(1)中的結(jié)論還成立嗎?;
拓展延伸:
(3)如圖3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若點P滿足PB=PC,∠BPC=90°,請直接寫出線段AP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年是新中國成立70周年,在“慶祝新中國成立70年華誕”主題教育活動月,深圳某學(xué)校組織開展了豐富多彩的活動,活動設(shè)置了“A:詩歌朗誦展演,B:歌舞表演,C:書畫作品展覽,D:手工作品展覽”四個專項活動,每個學(xué)生限選一個專項活動參與.為了解活動開展情況,學(xué)校隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
(1)本次隨機調(diào)查的學(xué)生人數(shù)是 人;
(2)請你補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角為 度.
(4)小濤和小華各自隨機參與其中的一個專項活動,請你用畫樹狀圖或列表的方式求他們恰好選中同一個專項活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形的項點都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過的中點,則的值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com