如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,),△AOB的面積是
(1)求點B的坐標(biāo);
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最小?若存在,求出點C的坐標(biāo);若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)由三角形S=OB•=可得點B的坐標(biāo);
(2)設(shè)拋物線的解析式為y=ax(x+2),點A在其上,求得a;
(3)存在點C、過點A作AF垂直于x軸于點F,拋物線的對稱軸x=-1交x軸于點E、當(dāng)點C位于對稱軸與線段AB的交點時,△AOC的周長最小,由三角形相似,得到C點坐標(biāo).
(4)設(shè)p(x,y),直線AB為y=kx+b,解得k、b,由S四BPOD=S△BPO+S△BOD,S△AOD=S△AOB-S△BOD,兩面積正比可知,求出x.
解答:解:(1)由題意得OB•=,
∴B(-2,0).

(2)設(shè)拋物線的解析式為y=ax(x+2),代入點A(1,),得,
∴y=x2+x,

(3)存在點C、過點A作AF垂直于x軸于點F,拋物線
的對稱軸x=-1交x軸于點E、當(dāng)點C位于對稱軸
與線段AB的交點時,△AOC的周長最小,
∵△BCE∽△BAF,
,
∴CE==
∴C(-1,).

(4)存在.如圖,設(shè)P(x,y),直線AB為y=kx+b,
,
解得
∴直線AB為y=x+,
S四BPOD=S△BPO+S△BOD=|OB||YP|+|OB||YD|=|YP|+|YD|
=x+-(x2+x),
=-x2-x+x+,
=-x2-x+,
∵S△AOD=S△AOB-S△BOD=-×2×|x+|=-x+
==,
∴x1=-,x2=1(舍去),
∴p(-,-),
又∵S△BOD=x+
==,
∴x1=-,x2=-2.
P(-2,0),不符合題意.
∴存在,點P坐標(biāo)是(-,-).
點評:本題二次函數(shù)的綜合題,要求會求二次函數(shù)的解析式,考查三角形相似和面積公式等知識點,本題步驟有點多,做題需要認(rèn)真細(xì)心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案