【題目】作出函數(shù)y=﹣x+3的圖象,并利用圖象回答問題:
(1)當(dāng)y<0時(shí),x的取值范圍為_____;
(2)當(dāng)﹣2<x<2時(shí),y的取值范圍為_____;
(3)圖象與直線y=x﹣1的交點(diǎn)坐標(biāo)為______;這兩條直線與y軸圍成的三角形面積為______.
【答案】(1) x>3;(2) 1<y<5;(3)(2,1);4.
【解析】
(1)根據(jù)題意可知所求的是直線y=﹣x+3在x軸下方部分x的取值范圍;
(2)根據(jù)題意可知所求的是直線y=﹣x+3在﹣2<x<2范圍內(nèi)y的取值范圍;
(3)作出直線y=x﹣1,即可得到兩直線的交點(diǎn)坐標(biāo),進(jìn)而得到這兩條直線與y軸圍成的三角形面積.
解:y=﹣x+3,令x=0,則y=3;令y=0,則x=3;
如圖所示,直線y=﹣x+3即為所求;
(1)當(dāng)y<0時(shí),x的取值范圍為x>3;
(2)當(dāng)﹣2<x<2時(shí),y的取值范圍為1<y<5;
(3)如圖,作出直線y=x﹣1,B點(diǎn)坐標(biāo)為(0,-1),兩直線的交點(diǎn)為C(2,1);
這兩條直線與y軸圍成的△ABC的面積為×4×2=4.
故答案為:x>3;1<y<5;(2,1);4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)AC=______cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線.
(2)若AB=2,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖,在△中,把繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到,把繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到,連接,當(dāng)時(shí),我們稱△是△的“旋補(bǔ)三角形”,△邊上的中線叫做的“旋補(bǔ)中線”,點(diǎn)叫做“旋補(bǔ)中心”.
⑴ 特例感知:在如圖、如圖中,是的“旋補(bǔ)三角形”,是的“旋補(bǔ)中線”.
① 如圖,當(dāng)為等邊三角形時(shí),與的數(shù)量關(guān)系為= ;
② 如圖,當(dāng),時(shí),則長(zhǎng)為 .
⑵ 精確作圖:如圖,已知在四邊形內(nèi)部存在點(diǎn),使得是的“旋補(bǔ)三角形”(點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)B),請(qǐng)用直尺和圓規(guī)作出點(diǎn)(要求:保留作圖痕跡,不寫作法和證明)
⑶ 猜想論證:在如圖中,當(dāng)△為任意三角形時(shí),猜想與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點(diǎn)D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,若∠CAE=15°.
(1)求證:△AOB是等邊三角形;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖像經(jīng)過點(diǎn).
()求該二次函數(shù)的關(guān)系式.
()證明:無論取何值,函數(shù)值總不等于.
()將該拋物線先向___________(填“左”或“右”)平移___________個(gè)單位,再向___________(填“上”或“下”)平移___________個(gè)單位,使得該拋物線的頂點(diǎn)為原點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖象中所反映的過程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x表示時(shí) 間,y表示張強(qiáng)離家的距離.根據(jù)圖象提供的信息,以下四個(gè)說法錯(cuò)誤的是( )
A. 體育場(chǎng)離張強(qiáng)家2.5千米
B. 張強(qiáng)在體育場(chǎng)鍛煉了15分鐘
C. 體育場(chǎng)離早餐店1.千米
D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com