在一節(jié)數(shù)學實踐活動課上,呂老師手拿著三個正方形硬紙板和幾個不同的圓形的盤子,他向同學們提出了這樣一個問題:已知手中圓盤的直徑為13cm,手中的三個正方形硬紙板的邊長均為5cm,若將三個正方形紙板不重疊地放在桌面上,能否用這個圓盤將其蓋?問題提出后,同學們七嘴八舌,經(jīng)過討論,大家得出了一致性的結(jié)論是:本題實際上是求在不同情況下將三個正方形硬紙板無重疊地適當放置,圓盤能蓋住時的最小直徑.然后將各種情形下的直徑值與13cm進行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W們探索性畫出的四類圖形畫在黑板上,如下圖所示.
(1)通過計算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為
cm.(填準確數(shù))
(2)圖②能蓋住三個正方形硬紙板所需的圓盤最小直徑為
cm圖③能蓋住三個正方形硬紙板所需的圓盤最小直徑為
cm?(結(jié)果填準確數(shù))
(3)按④中的放置,考慮到圖形的軸對稱性,當圓心O落在GH邊上時,此時圓盤的直徑最。埬銓懗鲈摲N情況下求圓盤最小直徑的過程.(計算中可能用到的數(shù)據(jù),為了計算方便,本問在計算過程中,根據(jù)實際情況最后的結(jié)果可對個別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計算可知:A.該圓盤能蓋住三個正方形硬紙板,B.該圓盤不能蓋住三個正方形硬紙板.你的結(jié)論是
.(填序號)