【題目】把一張對(duì)面互相平行的紙條折成如圖所示那樣,EF是折痕,若∠EFB=32°則下列結(jié)論正確的有( )
(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
根據(jù)平行線的性質(zhì)及翻折變換的性質(zhì)對(duì)各小題進(jìn)行逐一分析即可.
解:(1)∵AE∥BG,∠EFB=32°,
∴∠C′EF=∠EFB=32°,故本小題正確;
(2)∵AE∥BG,∠EFB=32°,
∴∠GEF=∠C′EF=32°,
∴∠AEC=180°-32°-32°=116°,故本小題正確;
(3)∵∠C′EF=32°,
∴∠GEF=∠C′EF=32°,
∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,
∵AC′∥BD′,
∴∠BGE=∠C′EG=64°,故本小題正確;
(4)∵∠BGE=64°,
∴∠CGF=∠BGE=64°,
∵DF∥CG,
∴∠BFD=180°-∠CGF=180°-64°=116°,故本小題正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2-bx的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC.
(1)求證:△BDG≌△ADC.
(2)分別取BG、AC的中點(diǎn)E、F,連接DE、DF,則DE與DF有何關(guān)系,并說明理由.
(3)在(2)的條件下,連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×5網(wǎng)格圖中,其中每個(gè)小正方形邊長均為1,梯形ABCD和五邊形EFGHK的頂點(diǎn)均為小正方形的頂點(diǎn).
(1)以B為位似中心,在網(wǎng)格圖中作四邊形A′BC′D′,使四邊形A′BC′D′和梯形ABCD位似,且位似比為2:1;
(2)求(1)中四邊形A′BC′D′與五邊形EFGHK重疊部分的周長.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),伴隨點(diǎn)P的運(yùn)動(dòng),矩形PEFG在射線AB上滑動(dòng);動(dòng)點(diǎn)K從點(diǎn)P出發(fā)沿折線PE﹣﹣EF以每秒1個(gè)單位長的速度勻速運(yùn)動(dòng).點(diǎn)P、K同時(shí)開始運(yùn)動(dòng),當(dāng)點(diǎn)K到達(dá)點(diǎn)F時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)當(dāng)t=1時(shí),KE=_____,EN=_____;
(2)當(dāng)t為何值時(shí),△APM的面積與△MNE的面積相等?
(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時(shí),求出t的值;
(4)當(dāng)t為何值時(shí),△PKB是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,D是AC的中點(diǎn),CE⊥BD于點(diǎn)E,交BA的延長線于點(diǎn)F.若BF=12,則△FBC的面積為( )
A. 40 B. 46 C. 48 D. 50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC, P是BD上一點(diǎn),過點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M、N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年大豆和小麥的總產(chǎn)量為200噸,今年大豆和小麥的總產(chǎn)量為225噸,其中大豆比去年増產(chǎn)5%,小麥比去年増產(chǎn)15%,求該農(nóng)場今年大豆和小麥的產(chǎn)量各是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+6分別與x軸,y軸交于點(diǎn)B,C且與直線y=x交于點(diǎn)A,點(diǎn)D是直線OA上的點(diǎn),當(dāng)△ACD為直角三角形時(shí),則點(diǎn)D的坐標(biāo)為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com