(2006•臨汾)如圖,在梯形ABCD中,AB∥DC,過(guò)對(duì)角線AC的中點(diǎn)O作EF⊥AC,分別交邊AB、CD于點(diǎn)E、F,連接CE、AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=4,tan∠OAE=,求四邊形AECF的面積.

【答案】分析:(1)運(yùn)用“對(duì)角線互相垂直平分的四邊形是菱形”判定,已知EF⊥AC,AO=OC,只需要證明OE=OF即可,用全等三角形得出;
(2)菱形的面積可以用對(duì)角線積的一半來(lái)表示,由已知條件,解直角三角形AOE可求AC、EF的長(zhǎng)度.
解答:(1)證明:
方法1:
∵AB∥DC,
∴∠1=∠2.
在△CFO和△AEO中,
∴△CFO≌△AEO.
∴OF=OE,
又∵OA=OC,
∴四邊形AECF是平行四邊形.
∵EF⊥AC,
∴四邊形AECF是菱形.

方法2:證△AEO≌△CFO同方法1,
∴CF=AE,
∵CF∥AE,
∴四邊形AFCE是平行四邊形.
∵OA=OC,EF⊥AC,
∴EF是AC的垂直平分線,
∴AF=CF,
∴四邊形AECF是菱形.

(2)解:∵四邊形AECF是菱形,EF=4,
∴OE=EF=×4=2.
在Rt△AEO中,
∵tan∠OAE=,
∴OA=5,
∴AC=2AO=2×5=10.
∴S菱形AECF=EF•AC=×4×10=20.
點(diǎn)評(píng):本題主要考查三角形全等的判定及性質(zhì)、菱形的判定、面積計(jì)算及三角函數(shù)等知識(shí),考查推理論證的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2006•臨汾)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)C沿CA,以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)O從點(diǎn)C沿CB,以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng).則運(yùn)動(dòng)過(guò)程中所構(gòu)成的△CPO的面積y(cm2)與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:選擇題

(2006•臨汾)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)C沿CA,以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)O從點(diǎn)C沿CB,以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng).則運(yùn)動(dòng)過(guò)程中所構(gòu)成的△CPO的面積y(cm2)與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河南省中考數(shù)學(xué)模擬試卷(09)(解析版) 題型:解答題

(2006•臨汾)如圖,直線y=-x+3與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過(guò)B,C兩點(diǎn)的拋物線y=ax2+bx+c與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線x=2.
(1)求A點(diǎn)的坐標(biāo);
(2)求該拋物線的函數(shù)表達(dá)式;
(3)連接AC.請(qǐng)問(wèn)在x軸上是否存在點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山西省臨汾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•臨汾)如圖,直線y=-x+3與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過(guò)B,C兩點(diǎn)的拋物線y=ax2+bx+c與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸是直線x=2.
(1)求A點(diǎn)的坐標(biāo);
(2)求該拋物線的函數(shù)表達(dá)式;
(3)連接AC.請(qǐng)問(wèn)在x軸上是否存在點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山西省臨汾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•臨汾)如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點(diǎn)與N點(diǎn)重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動(dòng),等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動(dòng),直到點(diǎn)N與點(diǎn)B重合為止.
(1)等腰直角三角形PMN在整個(gè)移動(dòng)過(guò)程中與等腰梯形ABCD重疊部分的形狀由______形變化為_(kāi)_____形;
(2)設(shè)當(dāng)?shù)妊苯侨切蜳MN移動(dòng)x(s)時(shí),等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x=4(s)時(shí),求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案