【題目】如圖,在△ABC中,點(diǎn)D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.
(1)由題設(shè)條件,請(qǐng)寫出三個(gè)正確結(jié)論:(要求不再添加其他字母和輔助線,找結(jié)論過程中添加的字母和輔助線不能出現(xiàn)在結(jié)論中,不必證明)
答:結(jié)論一: ;
結(jié)論二: ;
結(jié)論三: .
(2)若∠B=45°,BC=2,當(dāng)點(diǎn)D在BC上運(yùn)動(dòng)時(shí)(點(diǎn)D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時(shí)BD的長(zhǎng).
(注意:在第(2)的求解過程中,若有運(yùn)用(1)中得出的結(jié)論,須加以證明)
【答案】(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;(2)①;②當(dāng)△ADE是等腰三角形時(shí),BD的長(zhǎng)為1或2﹣.
【解析】
試題分析:(1)由∠B=∠C,根據(jù)等腰三角形的性質(zhì)可得AB=AC;由∠1=∠C,∠AED=∠EDC+∠C得到∠AED=∠ADC;又由∠DAE=∠CAD,根據(jù)相似三角形的判定可得到△ADE∽△ACD;
(2)①由∠B=∠C,∠B=45°可得△ACB為等腰直角三角形,則AC=BC=×2=,由∠1=∠C,∠DAE=∠CAD,根據(jù)相似三角形的判定可得△ADE∽△ACD,則有AD:AC=AE:AD,即AD2=AEAC,
AE===AD2,當(dāng)AD⊥BC,AD最小,且AD=BC=1,此時(shí)AE最小為,利用CE=AC﹣AE得到CE的最大值;
②討論:當(dāng)AD=AE時(shí),則∠1=∠AED=45°,得到∠DAE=90°,則點(diǎn)D與B重合,不合題意舍去;當(dāng)EA=ED時(shí),如圖1,則∠EAD=∠1=45°,所以有AD平分∠BAC,得到AD垂直平分BC,則BD=1;
當(dāng)DA=DE時(shí),如圖2,由△ADE∽△ACD,易得△CAD為等腰三角形,則DC=CA=,于是有BD=BC﹣DC=2﹣.
解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;
(2)①∵∠B=∠C,∠B=45°,
∴△ACB為等腰直角三角形,
∴AC=BC=×2=,
∵∠1=∠C,∠DAE=∠CAD,
∴△ADE∽△ACD,
∴AD:AC=AE:AD,即AD2=AEAC,
∴AE===AD2,
當(dāng)AD最小時(shí),AE最小,此時(shí)AD⊥BC,AD=BC=1,
∴AE的最小值為×12=,
∴CE的最大值=﹣=;
②當(dāng)AD=AE時(shí),
∴∠1=∠AED=45°,
∴∠DAE=90°,
∴點(diǎn)D與B重合,不合題意舍去;
當(dāng)EA=ED時(shí),如圖1,
∴∠EAD=∠1=45°,
∴AD平分∠BAC,
∴AD垂直平分BC,
∴BD=1;
當(dāng)DA=DE時(shí),如圖2,
∵△ADE∽△ACD,
∴DA:AC=DE:DC,
∴DC=CA=,
∴BD=BC﹣DC=2﹣,
∴綜上所述,當(dāng)△ADE是等腰三角形時(shí),BD的長(zhǎng)為1或2﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn)P與點(diǎn)Q第一次在△ABC的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下文,尋找規(guī)律.
計(jì)算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….
(1)觀察上式,并猜想:(1﹣x)(1+x+x2+…+xn)= .
(2)根據(jù)你的猜想,計(jì)算:1+3+32+33…+3n= .(其中n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列各組中,表示互為相反意義的量是( 。
A. 上升與下降
B. 籃球比賽勝5場(chǎng)與負(fù)5場(chǎng)
C. 向東走3米,再向南走3米
D. 增產(chǎn)10噸糧食與減產(chǎn)﹣10噸糧食
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:①若a>0,b>0,則a+b>0;②若a≠b,則a2≠b2;③兩點(diǎn)之間,線段最短;④同位角相等,兩直線平行.其中真命題的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( ).
A. 頻數(shù)越小,頻率越大 B. 頻數(shù)大,頻率也一定大
C. 頻數(shù)一定時(shí),頻率越小,總次數(shù)越大 D. 頻數(shù)很大時(shí),頻率可能超過1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=4,AD=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.如果一條直線與果圓只有一個(gè)交點(diǎn),則這條直線叫做果圓的切線.已知A、B、C、D四點(diǎn)為果圓與坐標(biāo)軸的交點(diǎn),E為半圓的圓心,拋物線的解析式為y=x2﹣2x﹣3,AC為半圓的直徑.
(1)分別求出A、B、C、D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的果圓的切線DF的解析式;
(3)若經(jīng)過點(diǎn)B的果圓的切線與x軸交于點(diǎn)M,求△OBM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com