【題目】如圖,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),過點(diǎn)C作CE∥OD,過點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形.
(2)若AB=4,∠ABC=60°,求矩形OCED的面積.
【答案】(1)詳見解析;(2)4.
【解析】
(1)由條件可證得四邊形CODE為平行四邊形,再由菱形的性質(zhì)可求得∠COD=90°,則可證得四邊形CODE為矩形;
(2)首先推知△ABC是等邊三角形,所以AC=4,則OC=AC=2,根據(jù)勾股定理知,結(jié)合矩形的面積公式解答即可.
(1)證明:∵CE∥OD,DE∥AC,
∴四邊形OCED是平行四邊形.
又∵四邊形ABCD是菱形,
∴AC⊥BD,即∠COD=90°,
∴四邊形OCED是矩形.
(2)解:∵在菱形ABCD中,AB=4,
∴AB=BC=CD=4.
又∵∠ABC=60°,
∴△ABC是等邊三角形,
∴AC=4,
∴OC=AC=2,
∴
∴矩形OCED的面積是2×2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+x+c經(jīng)過A(4,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)在直線AC上方的拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某區(qū)九年級(jí)學(xué)生身體素質(zhì)情況,該區(qū)從全區(qū)九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí);優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如圖兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測(cè)試的學(xué)生是__;
(2)求圖1中的度數(shù)是 ,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該區(qū)九年級(jí)有學(xué)生名,如果全部參加這次體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為10的⊙A經(jīng)過點(diǎn)C(0,5)和點(diǎn)O (0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點(diǎn),則∠OBC 的余弦值為 _________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,點(diǎn)P、Q分別在BC、CD上,∠PAQ=∠B.
(1)如圖1,若AP⊥BC,求證:AP=AQ;
(2)如圖2,若點(diǎn)P為BC上一點(diǎn),AP=AQ仍成立嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5與x軸交于點(diǎn)B,與y軸交于點(diǎn)C.拋物線y=x2+bx+c經(jīng)過點(diǎn)B和點(diǎn)C,與x軸交于另一點(diǎn)A,連接AC.
(1)求拋物線的解析式;
(2)若點(diǎn)Q在直線BC上方的拋物線上,連接QC,QB,當(dāng)△ABC與△QBC的面積比等于2:3時(shí),直接寫出點(diǎn)Q的坐標(biāo):
(3)在(2)的條件下,點(diǎn)H在x軸的負(fù)半軸,連接AQ,QH,當(dāng)∠AQH=∠ACB時(shí),直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運(yùn)營(yíng).截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進(jìn)“森林城市”建設(shè),今春種植四類樹苗,園林部門從種植的這批樹苗中隨機(jī)抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計(jì)圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計(jì)圖,經(jīng)統(tǒng)計(jì)松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中松樹所對(duì)的圓心角為 度,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該市今年共種樹16萬(wàn)棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請(qǐng)用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩地相距,甲、乙兩輛貨車裝滿貨物分別從兩地相向而行,圖中分別表示甲、乙兩輛貨車離地的距離與行駛時(shí)間之間的函數(shù)關(guān)系.請(qǐng)你根據(jù)以上信息,解答下列問題:
(1)分別求出直線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)何時(shí)甲貨車離地的距離大于乙貨車離地的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于兩個(gè)不相等的實(shí)數(shù)a,b,我們規(guī)定符號(hào)max{a,b}表示a、b中的較大的數(shù),如:max{2,4}=4,按照這個(gè)規(guī)定,方程max{x,﹣x}=x2﹣x﹣1的解為( 。
A.1+或1﹣B.1或﹣1C.1﹣或1D.1+或﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com