正方形ABCD的對角線交點為O,兩條對角線把它分成了四個面積相等的三角形.
(1)平行四邊形ABCD的兩條對角線交點為O,若△AOB,△BOC,△COD,△DOA面積分別為S1,S2,S3,S4,試判斷S1,S2,S3,S4的關系,并加以證明;
(2)四邊形ABCD的兩條對角線互相垂直,交點為O,若△AOB,△BOC,△COD,△DOA面積分別為S1,S2,S3,S4,試判斷S1,S2,S3,S4的關系,并加以證明;
(3)四邊形ABCD的兩條對角線交點為O,若△AOB,△BOC,△COD,△DOA面積分別為S1,S2,S3,S4,試判斷S1,S2,S3,S4的關系,并加以證明;
(4)四邊形ABCD的兩條對角線相等,交點為O,∠BAC=∠BDC,若△AOB,△BOC,△COD,△DOA面積分別為S1,S2,S3,S4,試只用S1,S3或只用S2,S4表示四邊形ABCD的面積S.