【題目】如圖,△ABC和△FPQ均是等邊三角形,點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),點(diǎn)P在AB邊上,連接EF、QE.若AB=6,PB=1,則QE=

【答案】2
【解析】解:連結(jié)FD,如,
∵△ABC為等邊三角形,
∴AC=AB=6,∠A=60°,
∵點(diǎn)D、E、F分別是等邊△ABC三邊的中點(diǎn),AB=6,PB=1,
∴AD=BD=AF=3,DP=DB﹣PB=3﹣1=2,EF為△ABC的中位線,
∴EF∥AB,EF= AB=3,△ADF為等邊三角形,
∴∠FDA=60°,
∴∠1+∠3=60°,
∵△PQF為等邊三角形,
∴∠2+∠3=60°,F(xiàn)P=FQ,
∴∠1=∠2,
∵在△FDP和△FEQ中
,
∴△FDP≌△FEQ(SAS),
∴DP=QE,
∵DP=2,
∴QE=2.
故答案為:2.

連結(jié)FD,根據(jù)等邊三角形的性質(zhì),由△ABC為等邊三角形得到AC=AB=6,∠A=60°,再根據(jù)點(diǎn)D、E、F分別是等邊△ABC三邊的中點(diǎn),則AD=BD=AF=3,DP=2,EF為△ABC的中位線,于是可判斷△ADF為等邊三角形,得到∠FDA=60°,利用三角形中位線的性質(zhì)得EF∥AB,EF= AB=3,根據(jù)平行線性質(zhì)得∠1+∠3=60°;又由于△PQF為等邊三角形,則∠2+∠3=60°,F(xiàn)P=FQ,所以∠1=∠2,然后根據(jù)“SAS”判斷△FDP≌△FEQ,所以DP=QE=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王乘公共汽車從甲地到相距40千米的乙地辦事,然后乘出租車返回,出租車的平均速度比公共汽車多20千米/時(shí),回來時(shí)路上所花時(shí)間比去時(shí)節(jié)省了 ,設(shè)公共汽車的平均速度為x千米/時(shí),則下面列出的方程中正確的是(
A. = ×
B. = ×
C. + =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號(hào)分別為2和5,乙口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號(hào)分別為4和9,丙口袋中裝有三個(gè)相同的小球,它們的標(biāo)號(hào)分別為1,6,7.從這3個(gè)口袋中各隨機(jī)取出一個(gè)小球.
(1)用樹形圖表示所有可能出現(xiàn)的結(jié)果;
(2)若用取出的三個(gè)小球的標(biāo)號(hào)分別表示三條線段的長,求這些線段能構(gòu)成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x的圖象與函數(shù)y= 的圖象在第一象限內(nèi)交于點(diǎn)B,點(diǎn)C是函數(shù)y= 在第一象限圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)△OBC的面積為3時(shí),點(diǎn)C的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在以“關(guān)愛學(xué)生、安全第一”為主題的安全教育宣傳月活動(dòng)中,某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,了解到上學(xué)方式主要有:A﹣結(jié)伴步行、B﹣?zhàn)孕谐塑、C﹣家人接送、D﹣其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)本次抽查的學(xué)生人數(shù)是多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖,并在圖中標(biāo)出“自行乘車”對(duì)應(yīng)扇形的圓心角的度數(shù);
(4)如果該校學(xué)生有2080人,請(qǐng)你估計(jì)該!凹胰私铀汀鄙蠈W(xué)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD中,E是CD上一點(diǎn),F(xiàn)在CB的延長線上,且DE=BF.
(1)求證:△ADE≌△ABF;
(2)問:將△ADE順時(shí)針旋轉(zhuǎn)多少度后與△ABF重合,旋轉(zhuǎn)中心是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,直徑AB左側(cè)的半圓上有一點(diǎn)動(dòng)點(diǎn)E(不與點(diǎn)A、B重合),連結(jié)EB、ED.

(1)如果∠CBD=∠E,求證:BC是⊙O的切線;
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△EDB≌△ABD,并給予證明;
(3)在(1)的條件下,若tanE= ,BC= ,求陰影部分的面積.(計(jì)算結(jié)果精確到0.1)
(參考數(shù)值:π≈3.14, ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖根據(jù)圖中提供的信息回答下列問題:

(1)小明家到學(xué)校的路程是_____米,小明在書店停留了_____分鐘;

(2)本次上學(xué)途中,小明一共行駛了______米,一共用了_____分鐘;

(3)在整個(gè)上學(xué)的途中______(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是____/分;

(4)小明出發(fā)多長時(shí)間離家1200米?

查看答案和解析>>

同步練習(xí)冊(cè)答案