精英家教網 > 初中數學 > 題目詳情
3、如圖,在△ABC和△ADC中,AB=AD,要判定△ABC≌△ADC,還需要增加的條件是
∠BAC=∠DAC
.(只需寫出一個條件)
分析:需要增加的條件是∠BAC=∠DAC,因為AC=AC,AB=AD,根據SAS即可得到答案.
解答:解:需要增加的條件是∠BAC=∠DAC,
理由是:∵AB=AD,∠BAC=∠DAC,AC=AC,
∴△ABC≌△ADC.
故答案為:∠BAC=∠DAC.
點評:本題主要考查對全等三角形的判定定理的理解和掌握,題型較好,此題是一個開放型的題目.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補,DE=mAC(m>1).試探索線段EF與AB的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點.則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請說明AE=BD的理由.

查看答案和解析>>

同步練習冊答案