解:(1)設(shè)EC=3k,由tan∠EFC=
,則FC=4k,EF=5k,
∵四邊形ABCD是矩形,
∴AB=DC=8k,
∵∠AFE=∠D=90°,
∴∠AFB+∠EFC=90°,
∵∠B=90°,
∴∠BAF+∠AFB=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=
,
∴BF=6k,AF=10k,
在RT△AFE中,AF
2+EF
2=AE
2,AE=5
,
∴100k
2+25k
2=(5
)
2,
解得:k=1,
∴AB=DC=8,BC=AD=AF=10,
所以矩形ABCD的周長為36.
(2)∵GD=FC,DE=EF,
∴cos∠EFC=
=
,
∵cos∠BAF=
=
,∠BAF=∠EFC,
∴
=
,
∴△DBA∽△EGD,
∴∠DBA=∠EGD,
∵∠DBA+∠ADB=90°,
∴∠DGH+∠GDH=90°,
∴∠GHD=90°,
故可得BD⊥GE.
分析:(1)設(shè)EC=3k,則FC=4k,EF=5k,然后判斷出∠BAF=∠EFC,利用三角函數(shù)的知識表示出BF、AF,結(jié)合AE的長,在RT△AFE中利用勾股定理可求出矩形ABCD的邊長,繼而可得出周長.
(2)根據(jù)題意可得GD=FC,DE=EF,然后表示出cos∠EFC,及cos∠BAF,根據(jù)∠BAF=∠EFC,可得出一對相等的比例關(guān)系,繼而可判斷出△DBA∽△EGD,得出∠DBA=∠EGD,然后利用等角代換可確定結(jié)論.
點評:此題考查了翻折變換及相似三角形的判定與性質(zhì),綜合的知識點較多,解答第一問要求我們能根據(jù)三角函數(shù)值正確表示出三角形的各邊長,第二問要求我們熟練相似三角形的判定定理,及相似三角形的性質(zhì).