如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個結(jié)論:
①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE的大小為定值.
其中正確的結(jié)論個數(shù)為( )
A.4 B. 3 C. 2 D. 1
B 解:①∵ABCD為菱形,∴AB=AD,
∵AB=BD,∴△ABD為等邊三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,AD=BD,
∴△AED≌△DFB,故本選項(xiàng)正確;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴點(diǎn)B、C、D、G四點(diǎn)共圓,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGC=∠DGC=60°,
過點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),
則△CBM≌△CDN(AAS),
∴S四邊形BCDG=S四邊形CMGN,
S四邊形CMGN=2S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四邊形CMGN=2S△CMG=2××CG×CG=CG2,故本選項(xiàng)錯誤;
③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),
∵AF=2FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=2AE,
∴FP:BE=FP:=1:6,
∵FP∥AE,
∴PF∥BE,
∴FG:BG=FP:BE=1:6,
即BG=6GF,故本選項(xiàng)正確;
④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(如圖3),
由(1)知,△ABD,△BDC為等邊三角形,
∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),
∴∠BDE=∠DBG=30°,
∴DG=BG,
在△GDC與△BGC中,
,
∴△GDC≌△BGC,
∴∠DCG=∠BCG,
∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯誤;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,
故本選項(xiàng)正確;
綜上所述,正確的結(jié)論有①③⑤,共3個,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知D為△ABC邊AB的中點(diǎn),E在AC上,將△ABC沿著DE折疊,使A點(diǎn)落在BC上的F處.若∠B=65°,則∠BDF等于( 。
A. 65° B. 50° C. 60° D. 57.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某商場有A,B兩種商品,若買2件A商品和1件B商品,共需80元;若買3件A商品和2件B商品,共需135元.
(1)設(shè)A,B兩種商品每件售價分別為a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根據(jù)市場調(diào)查:若按(1)中求出的單價銷售,該商場每天銷售B商品100件;若銷售單價每上漲1元,B商品每天的銷售量就減少5件.
①求每天B商品的銷售利潤y(元)與銷售單價(x)元之間的函數(shù)關(guān)系?
②求銷售單價為多少元時,B商品每天的銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長線上有點(diǎn)E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若OF:OB=1:3,⊙O的半徑R=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖8,有一個英語單詞,四個字母都關(guān)于直線l對稱,請?jiān)谠嚲砩涎a(bǔ)全字母,在答題卡上寫出這個單詞所指的物品 2
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)是( 。
A. 5或6或7 B. 6或7 C. 6或7或8 D. 7或8或9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com