【題目】在⊙O中,半徑為4,弦AB的長為,弦AB所對的圓周角的度數(shù)為_____________.
【答案】60°或120°
【解析】
先根據(jù)題意畫出圖形,連接OA、OB,過O作OF⊥AB于F,由垂徑可求出AF的長,根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
解:如圖所示,連接OA、OB,過O作OF⊥AB于F,則AF=AB,∠AOF=∠AOB,
∵OA=4,AB=,
∴AF=,
∴sin∠AOF=,
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
在優(yōu)弧AB上取點H,連接AH、BH,
∴∠AHB=∠AOB=×120°=60°,
在劣弧AB上取點E,連接AE、EB,
∴∠AEB=180°60°=120°,
故答案為:60°或120°.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( 。
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下:
(甲)作AB的中垂線,交BC于P點,則P即為所求;
(乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求.
對于兩人的作法,下列判斷何者正確?( )
A. 兩人皆正確B. 兩人皆錯誤C. 甲正確,乙錯誤D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P,Q分別從BC兩點同時出發(fā),其中點P沿BC向終點C運動.速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數(shù)關系式;
(3)探索以PQ為直徑的圓與AC的位置關系,請寫出相應位置關系的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732,tan20°≈0.36,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:對于任意實數(shù),當自變量時,函數(shù)關于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由和兩部分共同組成,則函數(shù)為原函數(shù)的“對折函數(shù)”,如函數(shù)()的對折函數(shù)為.
(1)求函數(shù)()的對折函數(shù);
(2)若點在函數(shù)()的對折函數(shù)的圖象上,求的值;
(3)當函數(shù)()的對折函數(shù)與軸有不同的交點個數(shù)時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點A為中心,把△ABC逆時針旋轉(zhuǎn)120°,得到△AB'C′(點B、C的對應點分別為點B′、C′),連接BB',若AC'∥BB',則∠CAB'的度數(shù)為( 。
A.45°B.60°C.70°D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com