【題目】二次函數(shù)yax2+bx+ca0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:abc0②4a+2b+c0;③5ab+c0;若方程ax+5)(x1)=﹣1有兩個(gè)根x1x2,且x1x2,則﹣5x1x21;若方程|ax2+bx+c|1有四個(gè)根,則這四個(gè)根的和為﹣8,其中正確的結(jié)論有( 。

A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤

【答案】D

【解析】

根據(jù)開(kāi)口方向、對(duì)稱(chēng)軸、與y軸的交點(diǎn)可判斷①;根據(jù)頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),求出b、ca的關(guān)系,可判斷②和③;先求出拋物線(xiàn)與x軸的交點(diǎn),可判斷④;根據(jù)根與系數(shù)的關(guān)系可判斷⑤.

解:∵拋物線(xiàn)的開(kāi)口向上,則a0,對(duì)稱(chēng)軸在y軸的左側(cè),則b0,交y軸的負(fù)半軸,則c0,

abc0,所以①結(jié)論正確;

∵拋物線(xiàn)的頂點(diǎn)坐標(biāo)(-2,-9a),

,,

b=4ac=-5a,

∴拋物線(xiàn)的解析式為y=ax2+4ax-5a,

4a+2b+c=4a+8a-5a=7a0,所以②結(jié)論正確,

5a-b+c=5a-4a-5a=-4a0,故③結(jié)論正確,

對(duì)于方程ax2+4ax-5a=0,

a0,

x2+4x-5=0,

解得x1=-5,x2=1,

∴拋物線(xiàn)y=ax2+4ax-5ax軸于(-5,0)(1,0),

∴若方程a(x+5)(x-1)=-1有兩個(gè)根x1x2,且x1x2,則-5x1x21,故結(jié)論④正確,

若方程|ax2+bx+c|=1有四個(gè)根,設(shè)方程ax2+bx+c=1的兩根分別為x1,x2,則,可得x1+x2=-4,設(shè)方程ax2+bx+c=-1的兩根分別為x3,x4,則,可得x3+x4=-4,所以這四個(gè)根的和為-8,故結(jié)論⑤正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,∠BAC=90°,AB=AC=2,點(diǎn)分別在上(點(diǎn)不與點(diǎn)重合),且45°,若是等腰三角形,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線(xiàn)交BC于點(diǎn)E,交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)圖像的一部分,對(duì)稱(chēng)軸是直線(xiàn)x=2.關(guān)于下列結(jié)論:①ab<0;②;③;④;⑤方程的兩個(gè)根為,其中正確的結(jié)論有(

A.①③④B.②④⑤C.①②⑤D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m+1x+m220

1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x22+m221,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一農(nóng)戶(hù)要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為15m的住房墻,另外三邊用27m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門(mén),所圍矩形豬舍的長(zhǎng),寬分別為多少米時(shí),豬舍面積為96m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水城門(mén)位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢(mèng)蝶島區(qū)域重要的標(biāo)志性景觀(guān).在課外實(shí)踐活動(dòng)中,某校九年級(jí)數(shù)學(xué)興趣小組決定測(cè)量該水城門(mén)的高.他們的操作方法如下:如圖,先在D處測(cè)得點(diǎn)A的仰角為20°,再往水城門(mén)的方向前進(jìn)13米至C處,測(cè)得點(diǎn)A的仰角為31°(點(diǎn)D、CB在一直線(xiàn)上),求該水城門(mén)AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)軸交于,兩點(diǎn),與軸交于點(diǎn),直線(xiàn)與拋物線(xiàn)交于點(diǎn),,與軸交于點(diǎn)

1)求拋物線(xiàn)的解析式;

2)點(diǎn)是線(xiàn)段上的一動(dòng)點(diǎn)(不與,重合),過(guò)點(diǎn)軸的垂線(xiàn),交軸于點(diǎn),交拋物線(xiàn)于點(diǎn),若,線(xiàn)段是否存在最大值?若存在,請(qǐng)求出最大值,若不存在,請(qǐng)說(shuō)明理由;

3)若軸上存在一點(diǎn),使得時(shí),求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案