【題目】操作:將一把三角尺放在邊長為1的正方形上,并使它的直角頂點在對角線上滑動,直角的一邊始終經(jīng)過點,另一邊與射線相交于點

探究:設(shè),兩點間的距離為

1)點邊上時,線段與線段之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);

2)點在邊上時設(shè)四邊形的面積為,求之間的函數(shù)解析式,并寫出自變量的取值范圍(如圖2);

3)點在線段上滑動時,是否可能成為等腰三角形?如果可能,指出所有能使成為等腰三角形的點的位置,并直接寫出相應(yīng)的的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

【答案】1,見解析;(2);(3可能成為等腰三角形,Q與點D重合時,x=0Q在邊DC的延長線上時,x=1

【解析】

1)過點P,分別交AB于點M,交CD于點N,則四邊形AMND和四邊形BCNM都是矩形,都是等腰三角形,然后利用等腰三角形的性質(zhì)和等量代換證明,從而可證;

2)設(shè),然后分別表示出BM,CQ,PN的長度,然后利用求出各自的面積 ,最后利用即可求解;

3)分三種情況:點Q與點D重合;當(dāng)點Q在邊DC的延長線上;Q與點C重合,分別進行討論即可得出答案.

1,理由如下:

過點P,分別交AB于點M,交CD于點N,則四邊形AMND和四邊形BCNM都是矩形,

∵四邊形ABCD是正方形,

,

,

都是等腰直角三角形,

,

又∵

,

;

2)由(1)知,則,

,

,

,

,

,

);

3可能成為等腰三角形,理由如下:

①當(dāng)點P與點A重合,點Q與點D重合,這時,是等腰三角形,此時

②當(dāng)點Q在邊DC的延長線上,且時,是等腰三角形,如圖,

此時,

當(dāng)時,解得

,Q與點C重合,, 不存在;

綜上所述,當(dāng)時,為等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=BC=2,將直角邊ACA點逆時針旋轉(zhuǎn)至AC,連接BC′,EBC的中點,連接CE,CE的最大值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點AB的橫坐標(biāo)分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Q,y2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO中,ABOB,OB=AB=1,把ABO繞點O旋轉(zhuǎn)150°后得到A1B1O,則點A1坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”或“化歸”的思想方法,即把待解決的問題,通過轉(zhuǎn)化歸結(jié)到一類已解決或比較容易解決的問題.

譬如,求解一元二次方程,通常把它轉(zhuǎn)化為兩個一元一次方程來解;求解分式方程,通常把它轉(zhuǎn)化為整式方程來解,只是因為分式方程“去分母”時可能產(chǎn)生增根,所以解分式方程必須檢驗.

請你運用上述把“未知”轉(zhuǎn)化為“已知”的數(shù)學(xué)思想,解決下列問題.

(1)解方程:x3+x2﹣2x=0;

(2)解方程:=x;

(3)如圖,已知矩形草坪 ABCD 的長 AD=8m,寬 AB=3m,小華把一根長為10m 的繩子的一端固定在點 B,沿草坪邊沿 BA、AD 走到點 P 處,把長繩 PB 段拉直并固定在點 P,然后沿草坪邊沿 PD、DC 走到點 C 處,把長繩剩下的一段拉直,長繩的另一端恰好落在點 C.求 AP 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在正方形ABCD中,點E、F分別在CDBC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)為弘揚 東亞文化,某單位開展了東亞文化之都演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.

1)請直接寫出第一位出場是女選手的概率;

2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結(jié)果,并求出他們都是男選手的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A 市氣象站測得臺風(fēng)中心在 A 市正東方向800 千米的B處,以50千米/時的速度向北偏西60 BF方向移動,距臺風(fēng)中心500千米范圍內(nèi)是受臺風(fēng)影響的區(qū)域.

1A市是否會受到臺風(fēng)的影響?寫出你的結(jié)論并給予說明;

2)如果A市受這次臺風(fēng)影響,那么受臺風(fēng)影響的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形 ABCD中,AB 6cm BC 12cm ,B 30,點P BC 上由點B向點C 出發(fā),速度為每秒2cm;點Q 在邊AD上,同時由點 D 向點 A 運動,速度為每秒1cm ,當(dāng)點 P 運動到點C時,P 、Q 同時停止運動,連接 PQ,設(shè)運動時間為t秒.

1)當(dāng)t為何值時四邊形 ABPQ 為平行四邊形?

2)當(dāng)t為何值時,四邊形 ABPQ 的面積是四邊形 ABCD 的面積的四分之三?

3)連接 AP ,是否存在某一時刻t,使ABP 為等腰三角形?并求出此刻t的值.

查看答案和解析>>

同步練習(xí)冊答案