【題目】某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需甲種原料9kg、乙種原料3kg;生產(chǎn)一件B種產(chǎn)品需甲種原料4kg、乙種原料10kg.若生產(chǎn)的A種產(chǎn)品的數(shù)量與B種產(chǎn)品的數(shù)量之比不超過3:2,則生產(chǎn)結(jié)束后剩下的原料共__________kg.
【答案】10
【解析】分析:本題利用兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,設(shè)出未知數(shù),列出一元一次不等式組,解出未知數(shù)的解集,再利用生產(chǎn)的A種產(chǎn)品的數(shù)量與B種產(chǎn)品的數(shù)量之比不超過3:2,得出未知數(shù)的解,在計算出需要的原料的質(zhì)量,再用原料的原來質(zhì)量減去用掉的即可.
解析:設(shè)生產(chǎn)A種產(chǎn)品x件,B產(chǎn)品(50-x)件,根據(jù)題意得,∴生產(chǎn)A種產(chǎn)品30件,生產(chǎn)B種產(chǎn)品20件;甲原料:9×30+4×20=350,乙原料:3×30+10×20=290,∴剩下原料10千克.
故答案為10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b,4),且滿足(a+4)2+=0,過C作CB⊥x軸于B.
(1)求三角形ABC的面積.
(2)若線段AC與y軸交于點Q(0,2),在y軸上是否存在點P,使得三角形ABC和三角形QCP的面積相等,若存在,求出P點坐標(biāo);若不存在,請說明理由.
(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖②,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,BE平分∠ABC,CF平分∠BCD,BE、CF交于點G.若使,那么平行四邊形ABCD應(yīng)滿足的條件是【 】
A.∠ABC=60° B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若 x=-3 是關(guān)于x的一元一次方程2x+m+5=0的解,則m的值為( )
A. -1 B. 0 C. 1 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答問題.
經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.
如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S2.以圓心O為頂點作∠MON,使∠MON=90°.將∠MON繞點O旋轉(zhuǎn),OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.
(1)當(dāng)OM經(jīng)過點A時(如圖1),則S、S1、S2之間的關(guān)系為: (用含S1、S2的代數(shù)式表示);
(2)當(dāng)OM⊥AB于G時(如圖2),則(1)中的結(jié)論仍然成立嗎?請說明理由;
(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(如圖3),則(1)中的結(jié)論仍然成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,若PO=5,則點P與⊙O的位置關(guān)系是( )
A. 點P在⊙O內(nèi) B. 點P在⊙O上 C. 點P在⊙O外 D. 無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com