【題目】有一張矩形風(fēng)景畫(huà),長(zhǎng)為90cm,寬為60cm,現(xiàn)對(duì)該風(fēng)景畫(huà)進(jìn)行裝裱,得到一個(gè)新的矩形,要求其長(zhǎng)、寬之比與原風(fēng)景畫(huà)的長(zhǎng)、寬之比相同,且面積比原風(fēng)景畫(huà)的面積大44%.若裝裱后的矩形的上、下邊襯的寬都為acm,左、右邊襯的寬都為bcm,那么ab=___cm2

【答案】54

【解析】

根據(jù)新的矩形的長(zhǎng)、寬之比與原風(fēng)景畫(huà)的長(zhǎng)、寬之比相同得到得, 根據(jù)新矩形的面積比原風(fēng)景畫(huà)的面積大44%得到(60+2b)(90+2a=60×90×1+44%),然后解關(guān)于a、b的方程組求出ab,再計(jì)算ab即可.

解:根據(jù)題意得

解得2a=3b,

a=b,

∵(60+2b)(90+2a=60×90×1+44%),

整理得30a+45b+ab594=0

a=b代入得30b+45b+bb594=0,

整理得b2+60b396=0,解得b1=6,b2=66(舍去),

a=×6=9,

ab=9×6=54cm2).

故答案為:54

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間(s)滿(mǎn)足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關(guān)系式(不要求寫(xiě)t的取值范圍);

2)求小球飛行3s時(shí)的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB,垂足為E,連接OD.

(1)過(guò)點(diǎn)C作射線(xiàn)CFBA的延長(zhǎng)線(xiàn)于點(diǎn)F,且使得∠ECF=∠AOD;(要求尺規(guī)作圖,不寫(xiě)作法)

(2)求證:CF⊙O的切線(xiàn);

(3)若OE:AE=1:2,且AF=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )

A. -3  B. -6  C. -4 D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)垃圾進(jìn)行分類(lèi)投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類(lèi)的落實(shí)情況,某居委會(huì)成立了甲、乙兩個(gè)檢查組,采取隨機(jī)抽查的方式分別對(duì)轄區(qū)內(nèi)的A,BC,D四個(gè)小區(qū)進(jìn)行檢查,并且每個(gè)小區(qū)不重復(fù)檢查.

1)甲組抽到A小區(qū)的概率是多少;

2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按如下方法,將ABC的三邊縮小的原來(lái)的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、EF,得DEF,則下列說(shuō)法正確的個(gè)數(shù)是( 。

ABCDEF是位似圖形ABCDEF是相似圖形

ABCDEF的周長(zhǎng)比為12ABCDEF的面積比為41

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形CGFE的頂點(diǎn)C,D,E在同一條直線(xiàn)上,頂點(diǎn)B,C,G在同一條直線(xiàn)上.OEG的中點(diǎn),∠EGC的平分線(xiàn)GH過(guò)點(diǎn)D,交BE于點(diǎn)H,連接FHEG于點(diǎn)M,連接OH.以下四個(gè)結(jié)論:GHBE;EHM∽△GHF1;2,其中正確的結(jié)論是( 。

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD是⊙O的內(nèi)接正方形,延長(zhǎng)BAE,使AE=AB,連接ED


1)求證:直線(xiàn)ED是⊙O的切線(xiàn);
2)連接EOAD于點(diǎn)F,求證:EF=2FO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建筑物,從10m高的窗口A,用水管向外噴水,噴出的水呈拋物線(xiàn)狀(拋物線(xiàn)所在的平面與墻面垂直),如圖所示,如果拋物線(xiàn)的最高點(diǎn)M離墻1m,離地面m,則水流落地點(diǎn)B離墻的距離OB是(

A.2mB.3mC.4mD.5m

查看答案和解析>>

同步練習(xí)冊(cè)答案