【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(12,0),B(8,6),C(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒3個(gè)單位長度的速度沿邊OA向終點(diǎn)A運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒2個(gè)單位長度的速度沿邊BC向終點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,作AG⊥PQ于點(diǎn)G,則AG的最大值為( )
A.B.C.D.6
【答案】B
【解析】
連接OB,交PQ于點(diǎn)D,過點(diǎn)D作DF⊥OA于點(diǎn)F,可求出點(diǎn)D的坐標(biāo)與t無關(guān),由Rt△ADG中可得AG的最大值為AD,此題得解.
連接OB,交PQ于點(diǎn)D,連接AD,過點(diǎn)D作DF⊥OA于點(diǎn)F,
由題意得 ,
∵OC=6,BC=8,
∴OB==10.
∵BQ∥OP,
∴△BDQ∽△ODP,
∴===
∴OD=6.
∵CB∥OA,
∴∠DOF=∠OBC.
在Rt△OBC中,sin∠OBC===,cos∠OBC===,
∴OF=ODcos∠OBC=6×=,DF=ODsin∠OBC=6×=,
∴點(diǎn)D的坐標(biāo)為(,),
∴
∴
∵AG⊥PQ
∴
∴當(dāng)G與D重合時(shí)AG的最大,最大值為,
故選B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)商原計(jì)劃對樓盤新房以每平方米4000元的銷售價(jià)對外銷售.現(xiàn)為了加快資金周轉(zhuǎn),對銷售價(jià)經(jīng)過兩次下調(diào)后,決定在開盤之日以每平方米3240元的銷售價(jià)進(jìn)行促銷.
(1)求銷售價(jià)平均每次下調(diào)的百分率;
(2)開盤之日,開發(fā)商又給予以下兩種優(yōu)惠方案以供選擇:方案①一次性送裝修費(fèi)每平方米50元;方案②打9.8折銷售.張先生要購買一套100平方米的住房,試問哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,垂足分別為、,,是的中點(diǎn),,交于點(diǎn).下列結(jié)論:①;②垂直平分;③;④;⑤.其中正確的是( )
A.①②③B.①③⑤C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過時(shí),材料溫度降為600℃.如圖,煅燒時(shí)溫度與時(shí)間成一次函敷關(guān)系:鍛造時(shí),溫度與時(shí)間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)與的函數(shù)關(guān)系式,并且寫出自變量的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于400℃時(shí),須停止操作.那么鍛造的操作時(shí)間最多有多長?.
(3)如果加工每個(gè)零件需要鍛造12分鐘,并且當(dāng)材料溫度低于400℃時(shí),需要重新煅燒.通過計(jì)算說明加工第一個(gè)零件,一共需要多少分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】面積為1的平行四邊形的邊和被分為等份,邊和被分為等份,按如圖所示的方式連接分點(diǎn),則圖中形成的小平行四邊形的面積________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過點(diǎn)A、D的⊙O分別交邊AB、AC于點(diǎn)E、F.
(1)求證:BC是⊙O的切線;
(2)若BE=16,sinB=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上一動(dòng)點(diǎn)(不與、重合),連接, 作,使,交于點(diǎn).當(dāng)為等腰三角形時(shí),則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,將矩形對折,得到折痕;沿著折疊,點(diǎn)的對應(yīng)點(diǎn)為與的交點(diǎn)為;再沿著折疊,使得與重合,折痕為,此時(shí)點(diǎn)的對應(yīng)點(diǎn)為.下列結(jié)論:①是直角三角形:②點(diǎn)在同一條直線上;③;④;⑤點(diǎn)是的外心,其中正確的個(gè)數(shù)為( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx-3a-5經(jīng)過點(diǎn)A(2,5)
(1)求出a和b之間的數(shù)量關(guān)系.
(2)已知拋物線的頂點(diǎn)為D點(diǎn),直線AD與y軸交于(0,-7)
①求出此時(shí)拋物線的解析式;
②點(diǎn)B為y軸上任意一點(diǎn)且在直線y=5和直線y=-13之間,連接BD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到線段BC,連接AB、AC,將AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到線段BH.截取BC的中點(diǎn)F和DH的中點(diǎn)G.當(dāng)點(diǎn)D、點(diǎn)H、點(diǎn)C三點(diǎn)共線時(shí),分別求出點(diǎn)F和點(diǎn)G的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com