精英家教網(wǎng)如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連接EF,試判別四邊形BCEF的形狀,并說明理由.
分析:(1)要證AC∥DE,只要證明,∠EDC=∠ACD即可;
(2)要判斷四邊形BCEF的形狀,可以先猜后證,利用三角形的全等,證明四邊形的兩組對邊分別相等.
解答:(1)證明:∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠ACD=∠CAB,
∵∠EDC=∠CAB,
∴∠EDC=∠ACD,
∴AC∥DE;

(2)解:四邊形BCEF是平行四邊形.
理由如下:
∵BF⊥AC,四邊形ABCD是矩形,
∴∠DEC=∠AFB=90°,DC=AB
在△CDE和△BAF中,
∠DEC=∠AFB
∠EDC=∠BAF
CD=BA

∴△CDE≌△BAF(AAS),
∴CE=BF,DE=AF(全等三角形的對應邊相等),
∵AC∥DE,
即DE=AF,DE∥AF,
∴四邊形ADEF是平行四邊形,
∴AD=EF,
∵AD=BC,
∴EF=BC,
∵CE=BF,
∴四邊形BCEF是平行四邊形(兩組對邊分別相等的四邊形是平行四邊形).
點評:本題所考查的知識點:三角形全等、平行四邊形的判定,矩形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案