【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).
【答案】(1)y=x2﹣x﹣4;(2)4;(3)四邊形APEQ為菱形,E點(diǎn)坐標(biāo)為(﹣,﹣).理由詳見(jiàn)解析.
【解析】試題分析:(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y=x2+bx+c中,求得b、c,進(jìn)而可求解析式;(2)由解析式先求得點(diǎn)D、C坐標(biāo),再根據(jù)S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC,列式計(jì)算即可;(3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、E對(duì)稱(chēng),則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對(duì)邊平行且相等的性質(zhì)可用t表示E點(diǎn)坐標(biāo),又E在E函數(shù)上,所以代入即可求t,進(jìn)而E可表示.
試題解析:(1)∵二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),
∴,
解得: ,
∴y=x2﹣x﹣4;
(2)過(guò)點(diǎn)D作DM⊥y軸于點(diǎn)M,
∵y=x2﹣x﹣4=(x﹣1)2﹣,
∴點(diǎn)D(1,﹣)、點(diǎn)C(0,﹣4),
則S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;
(3)四邊形APEQ為菱形,E點(diǎn)坐標(biāo)為(﹣,﹣).理由如下
如圖2,E點(diǎn)關(guān)于PQ與A點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四邊形AQEP為菱形,
∵FQ∥OC,
∴,
∴
∴AF=t,FQ=t
∴Q(3﹣t,﹣t),
∵EQ=AP=t,
∴E(3﹣t﹣t,﹣t),
∵E在二次函數(shù)y=x2﹣x﹣4上,
∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,
∴t=,或t=0(與A重合,舍去),
∴E(﹣,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中不能用平方差公式計(jì)算的是( )
A.(x﹣y)(﹣x+y)
B.(﹣x+y)(﹣x﹣y)
C.(﹣x﹣y)(x﹣y)
D.(x+y)(﹣x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將下列多項(xiàng)式分解因式,結(jié)果中不含因式x﹣1的是( )
A.x2﹣1
B.x(x﹣2)+(2﹣x)
C.x2﹣2x+1
D.x2+2x+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知原點(diǎn)是拋物線y=(m+1)x2的最低點(diǎn),則m的取值范圍是( 。
A. m<﹣1 B. m<1 C. m>﹣1 D. m>﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E(與點(diǎn)B、C不重合)是BC邊上一點(diǎn),將線段EA繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,過(guò)點(diǎn)F作BC的垂線交BC的延長(zhǎng)線于點(diǎn)G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使兩個(gè)直角三角形全等的條件是( )
A.一個(gè)銳角對(duì)應(yīng)相等
B.兩個(gè)銳角對(duì)應(yīng)相等
C.一條邊對(duì)應(yīng)相等
D.兩條邊對(duì)應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是AB邊上的一點(diǎn),連接FE并延長(zhǎng)與CD的延長(zhǎng)線相交于點(diǎn)G,作EH⊥FG交BC的延長(zhǎng)線于點(diǎn)H.
(1)若BC=8,BF=5,求線段FG的長(zhǎng);
(2)求證:EH=2EG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com