若根式有意義,則雙曲線與拋物線的交點在第     象限.

解析試題分析:根據(jù)題意得,2﹣2k>0,∴2k﹣2<0。
∴反比例函數(shù)的圖象位于第二、四象限。
∵拋物線的對稱軸為直線,與y軸的交點為(0,2﹣2k)在y軸正半軸,
∴拋物線的圖象不經(jīng)過第四象限。
∴雙曲線與拋物線的交點在第二象限。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

一個二次函數(shù)解析式過點(3,1);當x>0時 y隨x增大而減小;當x為2時函數(shù)值小于7,請寫出符合要求的二次函數(shù)解析式______________   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

若二次函數(shù)y=x2-4x+c的圖象與x軸沒有交點,其中c為整數(shù),則c=_________(只要求寫出一個)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象不經(jīng)過第   象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中結論正確的是   .(填正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點,則常數(shù)m的值是     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

有下列4個命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x﹣2y+2=0,若點P也在的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線y=2x2-2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.
(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當平行四邊形的面積為8時,求出點P、N的坐標;
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,我們不妨把橫坐標與縱坐標相等的點稱為“夢之點”,例如點(﹣1,﹣1),(0,0),(),…都是“夢之點”,顯然,這樣的“夢之點”有無數(shù)個.
(1)若點P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢之點”,求這個反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s是常數(shù))的圖象上存在“夢之點”嗎?若存在,請求出“夢之點”的坐標;若不存在,請說明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個不同的“夢之點”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,試求出t的取值范圍.

查看答案和解析>>

同步練習冊答案