【題目】今年某中學(xué)到鵝鼻嘴公園植樹,已知該中學(xué)離公園約15km,部分學(xué)生騎自行車出發(fā)40分鐘后,其余學(xué)生乘汽車出發(fā),汽車速度是自行車速度的3倍,全體學(xué)生同時到達,設(shè)自行車的速度為v km/h.

(1) 求v的值;

(2) 植樹活動完成后,由于學(xué)生比較勞累,騎自行車的學(xué)生的速度變?yōu)樵瓉淼?/span>,汽車速度不變,為了使兩批學(xué)生同時到達學(xué)校,那么騎自行的學(xué)生應(yīng)該提前多少時間出發(fā).

【答案】(1) ;(2)騎自行車的學(xué)生應(yīng)提前出發(fā).

【解析】分析:(1)根據(jù)題意列出方程,求出方程的解即可得到v的值;

(2)根據(jù)題意求出騎自行車的速度,即可得到騎自行的學(xué)生應(yīng)該提前的時間.

詳解:(1)由題意得:

解之得,

經(jīng)檢驗:是方程的解;

(2)自行車的速度變?yōu)?/span>

應(yīng)該提前時間 ,

則騎自行車的學(xué)生應(yīng)提前出發(fā).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在一條不完整的數(shù)軸上一動點A向左移動4個單位長度到達點B,再向右移動7個單位長度到達點C.

(1)若點A表示的數(shù)為0,求點B、點C表示的數(shù);

(2)若點C表示的數(shù)為5,求點B、點A表示的數(shù);

(3)如果點A、C表示的數(shù)互為相反數(shù),求點B表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD各頂點的坐標(biāo)分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)在如圖所示的平面直角坐標(biāo)系畫出該四邊形;

(2)四邊形ABCD的面積是________;

(3)四邊形ABCD內(nèi)(邊界點除外)一共有_____個整點(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有個點P(1,0),點P1次向上跳動1個單位至點P1(11),緊接著第2次向左跳動2個單位至點P2(―11),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位,……,依此規(guī)律跳動下去,點P100次跳動至點P100的坐標(biāo)是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,實線部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點P在⊙Q上.

(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點都在⊙P上的直角三角形場地ABC,其中∠C=90°,求場地的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小丁將中國的清華大學(xué)、北京大學(xué)及英國的劍橋大學(xué)的圖片分別貼在3張完全相同的不透明的硬紙板上,制成名校卡片,如圖,小丁將這3張卡片背面朝上洗勻后放在桌子上,從中隨機取一張卡片,放回后洗勻,在隨機抽取一張卡片.

(1)小丁第一次抽取的卡片上的圖片是劍橋大學(xué)的概率是多少?(請直接寫出結(jié)果)
(2)請你用列表法或畫樹狀圖(樹狀圖)法,幫助小丁求出兩次抽取的卡片上的圖片一個是國內(nèi)大學(xué),一個是國外大學(xué)的概率.(卡片名稱可用字母表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正方體的六個面上寫有六個連續(xù)的整數(shù).如圖,是此正方體的展開圖,相對面上兩個數(shù)之和相等,且個整數(shù)之和為,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一邊長為的正方形紙板的四個角各剪去一個邊長為的小正方形,然后把它折成一個無蓋紙盒.

求該紙盒的體積;

求該紙盒的全面積(外表面積);

為了使紙盒底面更加牢固且達到廢物利用的目的,現(xiàn)考慮將剪下的四個小正方形平鋪在盒子的底面,要求既不重疊又恰好鋪滿(不考慮紙板的厚度),求此時之間的倍數(shù)關(guān)系.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BGAE于點G,延長BGAD于點H.在下列結(jié)論中:

AH=DF;②∠AEF=45°;S四邊形EFHG=SDEF+SAGH;④△AEF≌△CDE

其中正確的結(jié)論有______ (填正確的序號)

查看答案和解析>>

同步練習(xí)冊答案