【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④△AEF≌△CDE
其中正確的結(jié)論有______ (填正確的序號(hào))
【答案】①②
【解析】分析:先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據(jù)三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯(cuò)誤.再根據(jù)△AEF最長(zhǎng)邊AE和△CED的最長(zhǎng)邊CD不相等,可判斷不是全等三角形.
詳解:∵BD是正方形ABCD的對(duì)角線,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正確;
如圖,連接HE,
∵BH是AE垂直平分線,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯(cuò)誤,
根據(jù)△AEF最長(zhǎng)邊AE和△CED的最長(zhǎng)邊CD不相等,可判斷不是全等三角形,故④不正確.
∴正確的是①②,
故答案為①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年某中學(xué)到鵝鼻嘴公園植樹(shù),已知該中學(xué)離公園約15km,部分學(xué)生騎自行車(chē)出發(fā)40分鐘后,其余學(xué)生乘汽車(chē)出發(fā),汽車(chē)速度是自行車(chē)速度的3倍,全體學(xué)生同時(shí)到達(dá),設(shè)自行車(chē)的速度為v km/h.
(1) 求v的值;
(2) 植樹(shù)活動(dòng)完成后,由于學(xué)生比較勞累,騎自行車(chē)的學(xué)生的速度變?yōu)樵瓉?lái)的,汽車(chē)速度不變,為了使兩批學(xué)生同時(shí)到達(dá)學(xué)校,那么騎自行的學(xué)生應(yīng)該提前多少時(shí)間出發(fā).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買(mǎi)籃球、排球共20個(gè),購(gòu)買(mǎi)2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買(mǎi)3個(gè)籃球的費(fèi)用與購(gòu)買(mǎi)5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買(mǎi)籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買(mǎi)方案,并直接寫(xiě)出其中最省錢(qián)的購(gòu)買(mǎi)方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).
(1)試說(shuō)明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB = BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn);
(1)求證:四邊形BDEF是菱形;(2)若AB =12cm,求菱形BDEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)(有甲、乙兩組)承接了世界園藝博覽會(huì)的一項(xiàng)小型工程任務(wù),這項(xiàng)任務(wù)規(guī)定在若干天內(nèi)完成.已知甲組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多20天,乙組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多10天.如果甲、乙兩組先合作15天,剩下的由甲單獨(dú)做,則正好如期完成,那么規(guī)定的時(shí)間是多少天?(列方程解應(yīng)用題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到△AB'C',若AB=4,則線段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是( )
A.
π
B.
π
C.2π
D.4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為AB邊上一點(diǎn),過(guò)點(diǎn)D作DF⊥DE,與BC延長(zhǎng)線交于點(diǎn)F.連接EF,與CD邊交于點(diǎn)G,與對(duì)角線BD交于點(diǎn)H.
(1)若BF=BD=,求BE的長(zhǎng);
(2)若∠ADE=2∠BFE,求證:FH=HE+HD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com